Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Exp Parasitol ; 261: 108768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679124

RESUMEN

This study describes the anthelmintic efficacy of an organic fraction (EtOAc-F) from Guazuma ulmifolia leaves and the evaluation of its reactive oxidative stress on Haemonchus contortus. The first step was to assess the anthelmintic effect of EtOAc-F at 0.0, 3.5, 7.0 and 14 mg kg of body weight (BW) in gerbil's (Meriones unguiculatus) artificially infected with H. contortus infective larvae (L3). The second step was to evaluate the preliminary toxicity after oral administration of the EtOAc-F in gerbils. Finally, the third step was to determine the relative expression of biomarkers such as glutathione (GPx), catalase (CAT), and superoxide dismutase (SOD) against H. contortus L3 post-exposition to EtOAc-F. Additionally, the less-polar compounds of EtOAc-F were identified by gas mass spectrophotometry (GC-MS). The highest anthelmintic efficacy (97.34%) of the organic fraction was found in the gerbils treated with the 14 mg/kg of BW. Histopathological analysis did not reveal changes in tissues. The relative expression reflects overexpression of GPx (p<0.05, fold change: 14.35) and over expression of SOD (p≤0.05, fold change: 0.18) in H. contortus L3 exposed to 97.44 mg/mL of EtOAc-F compared with negative control. The GC-MS analysis revealed the presence of 4-hydroxybenzaldehyde (1), leucoanthocyanidin derivative (2), coniferyl alcohol (3), ferulic acid methyl ester acetate (4), 2,3,4-trimethoxycinnamic acid (5) and epiyangambin (6) as major compounds. According to these results, the EtOAc-F from G. ulmifolia leaves exhibit anthelmintic effect and increased the stress biomarkers on H. contortus.


Asunto(s)
Antihelmínticos , Catalasa , Gerbillinae , Glutatión , Hemoncosis , Haemonchus , Estrés Oxidativo , Extractos Vegetales , Hojas de la Planta , Superóxido Dismutasa , Animales , Haemonchus/efectos de los fármacos , Hojas de la Planta/química , Estrés Oxidativo/efectos de los fármacos , Hemoncosis/veterinaria , Hemoncosis/tratamiento farmacológico , Hemoncosis/parasitología , Antihelmínticos/farmacología , Antihelmínticos/uso terapéutico , Antihelmínticos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico , Superóxido Dismutasa/metabolismo , Catalasa/metabolismo , Catalasa/análisis , Glutatión/metabolismo , Glutatión/análisis , Cromatografía de Gases y Espectrometría de Masas , Masculino , Recuento de Huevos de Parásitos/veterinaria , Biomarcadores , Glutatión Peroxidasa/metabolismo , Femenino
2.
Sci Rep ; 14(1): 11568, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773157

RESUMEN

Artemisia cina (Ac) is a plant with anthelmintic compounds such as 3'-demethoxy-6-O-demethylisoguaiacin (D) and norisoguaiacin (N). Three major objectives were proposed: (1) To evaluate biochemical parameters in blood (2) to determine the tissue oxidative stress by biomarkers as TBARS and glutathione peroxidase activity, and (3) to evaluate anatomopathological changes in organs such as the brain, liver, kidney, and lung after oral administration of n-hexane extract of Ac and D and N. D and N were administrated following the OECD guides for acute oral toxicity evaluation (Guide 420). Fifty Wistar rats were distributed into ten groups as follows: Group 1 (G1): 4 mg/Kg; G2: 40 mg/Kg; G3: 240 mg/Kg; G4: 1600 mg/Kg of n-hexane extract of Ac. G5: 2 mg/Kg; G6: 20 mg/Kg; G7: 120 mg/Kg; G8: 800 mg/Kg of D and N, G9: water and G10: polyvinylpyrrolidone at 2000 mg/Kg. At 14 days, the rats were euthanized, and the blood, liver, brain, kidney, and lung were taken for biochemical analysis, anatomopathological changes, and TBARS and GSH evaluation. Glucose, cholesterol, and phosphorus were altered. Histopathological analysis showed multifocal neuronal degeneration in the brain (G2). The kidney and lungs had changes in G7. The GSH and TBARS increased in G6 and G7. The TBARS activity was higher in G1 and G2. In conclusion, extract and D and N of Ac did not have damage at therapeutic doses. D, N, and n-hexane extract of A. cina do not cause histopathological damage at pharmaceutical doses. Still, the brain, kidney, and liver are related to biochemical parameters at higher doses. However, compounds are proposed as antioxidant agents.


Asunto(s)
Biomarcadores , Estrés Oxidativo , Extractos Vegetales , Ratas Wistar , Animales , Estrés Oxidativo/efectos de los fármacos , Ratas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Masculino , Riñón/efectos de los fármacos , Riñón/patología , Riñón/metabolismo , Encéfalo/patología , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Glutatión Peroxidasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismo
3.
Curr Pharm Biotechnol ; 24(11): 1397-1419, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36567280

RESUMEN

BACKGROUND: Nanoparticle formulations development for anti-aging treatment is increasing due to their multifunctional properties. These nanotechnological strategies can target cellular/ molecular pathways of the skin affected by the aging process. However, a review of these strategies is required to discuss their efficacy/safety and establish the needs for further research. OBJECTIVE: Innovative nanotechnological advances for skin anti-aging/rejuvenation are summarized and discussed in this work. METHODS: The information in this review was extracted from recent and relevant studies using nanotechnology for anti-aging treatment from scientific databases. RESULTS AND DISCUSSION: Results show an enhanced skin anti-aging effect of actives-loaded nanoparticles of next generation (nanostructured lipid carriers, fullerenes, transfersomes, protransfersomes, niosomes, ethosomes, transethosomes, glycerosomes, phytosomes) compared with nanocarriers of first generation or conventional formulations. Anti-aging active ingredients such as, flavonoids (rutin, hesperidin, quercetagetine, quercetin, epigallocatechin-3-gallate, myricetin, silibinin, curcuminoids, isoflavones); vitamins (E, D3, CoQ10); acids (hyaluronic, ascorbic, rosmarinic, gallic); extracts (Citrus sinensis, Tagetes erecta L., Achillea millefolium L., Citrus aurantium L., Glycyrrhiza glabra L., Aloe vera, propolis earned by Apis mellifera); and other compounds (adenosine, beta-glucan, heptapetide DEETGEF, resveratrol, cycloastragenol, melatonin, botulinum toxin, grapeseed oil), have been successfully entrapped into nanoparticles for skin rejuvenation. This encapsulation has improved their solubility, bioavailability, stability, permeability, and effectivity for skin anti-aging, providing a controlled drug release with minimized side effects. CONCLUSION: Recent studies show a trend of anti-aging herbal active ingredients-loaded nanoparticles, enhancing the moisturizing, antioxidant, regenerating and photoprotective activity of the skin. Suitable safety/shelf-life stability of these novel formulations is key to a successful translation to the clinic/industry.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Animales , Administración Cutánea , Portadores de Fármacos/farmacología , Piel , Nanotecnología/métodos , Envejecimiento
4.
Pathogens ; 11(10)2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36297217

RESUMEN

The purpose of the present study was to assess the ovicidal and larvicidal activity of a hydroalcoholic extract (HAE) and their fractions (aqueous, Aq-F and organic, EtOAc-F) from Guazuma ulmifolia leaves using Haemonchus contortus as a biological model. The egg hatching inhibition (EHI) and larval mortality against infective larvae (L3) tests were used to determine the anthelmintic effect of the treatments. The extract and fractions were tested at different concentrations against eggs and L3. Additionally, distilled water and methanol were used as negative controls and ivermectin as a positive control. The extract and fractions were subjected to HPLC analysis to identify the major compounds. The HAE displayed the highest ovicidal activity (100% EHI at 10 mg/mL). Fractionation of the HA extract allowed increasing the nematicidal effect in the EtOAc-F (100% EHI at 0.62 mg/mL and 85.35% mortality at 25 mg/mL). The phytochemical analysis of the extract and fractions revealed the presence of kaempferol, ethyl ferulate, ethyl coumarate, flavonol, luteolin, ferulic acid, luteolin rhamnoside, apigenin rutinoside, coumaric acid derivative, luteolin glucoside, and quercetin glucoside. These results suggest that G. ulmifolia leaves could be potential candidates for the control of H. contortus or other gastrointestinal parasitic nematodes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA