Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell Biochem ; 428(1-2): 87-99, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28083717

RESUMEN

The genome of Vibrio cholerae encodes three cation-proton antiporters of NhaP-type, Vc-NhaP1, 2, and 3. To examine physiological roles of Vc-NhaP antiporters, triple ΔnhaP1ΔnhaP2ΔnhaP3 and single ΔnhaP3 deletion mutants of V. cholerae were constructed and characterized. Vc-NhaP3 was, for the first time, cloned and biochemically characterized. Activity measurements on the inside-out membrane vesicle experimental model defined Vc-NhaP3 as a potassium-specific cation-proton antiporter. While elimination of functional Vc-NhaP3 resulted in only minor growth defect in potassium-rich medium at pH 6.0, the triple Vc-NhaP mutant demonstrated severe growth defects at both low and high [K+] at pH 6.0 and failed to grow at high [K+] in mildly alkaline (pH 8.0 and 8.5) media, as well. Expressed from a plasmid, neither of the Vc-NhaP paralogues was able to complement the severe potassium-sensitive phenotype of the triple deletion mutant completely. Vc-NhaP1 provided much better complementation at acidic pH compared to Vc-NhaP2, despite the fact that Vc-NhaP2 showed much higher antiport activity in sub-bacterial vesicles. In mildly alkaline pH only Vc-NhaP2 complemented the potassium-sensitive phenotype of the triple deletion mutant. Taken together, these data suggest that in vivo all three isoforms operate in concert, contributing to K+ resistance of V. cholerae. We suggest that the Vc-NhaP paralogue group might play a role in passing gastric acid barrier by ingested V. cholerae cells.


Asunto(s)
Antiportadores/genética , Antiportadores/metabolismo , Vibrio cholerae/crecimiento & desarrollo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Clonación Molecular , Medios de Cultivo/química , Eliminación de Gen , Concentración de Iones de Hidrógeno , Potasio/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo
2.
Mol Cell Biochem ; 389(1-2): 51-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24347178

RESUMEN

In this work, we report the phenotypic and biochemical effects of deleting the C-terminal cytoplasmic portion of the NhaP2 cation/proton antiporter from Vibrio cholerae. While the deletion changed neither the expression nor targeting of the Vc-NhaP2 in an antiporter-less Escherichia coli strain, it resulted in a changed sensitivity of the host to sodium ions at neutral pH, indicating an altered Na(+) transport through the truncated variant. When assayed in inside-out sub-bacterial vesicles, the truncation was found to result in greatly reduced K(+)/H(+) and Na(+)/H(+) antiport activity at all pH values tested and a greater than fivefold decrease in the affinity for K(+) (measured as the apparent K m) at pH 7.5. Being expressed in trans in a strain of V. cholerae bearing a chromosomal nhaP2 deletion, the truncated nhaP2 gene was able to complement its inability to grow in potassium-rich medium at pH 6.0. Thus the residual K(+)/H(+) antiport activity associated with the truncated Vc-NhaP2 was still sufficient to protect cells from an over-accumulation of K(+) ions in the cytoplasm. The presented data suggest that while the cytoplasmic portion of Vc-NhaP2 is not involved in ion translocation directly, it is necessary for optimal activity and substrate binding of the Vc-NhaP2 antiporter.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cationes/metabolismo , Citoplasma/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/genética , Clonación Molecular/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Potasio/metabolismo , Sodio/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Vibrio cholerae/genética
3.
Microbiology (Reading) ; 158(Pt 4): 1094-1105, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22241048

RESUMEN

Vibrio cholerae has adapted to a wide range of salinity, pH and osmotic conditions, enabling it to survive passage through the host and persist in the environment. Among the many proteins responsible for bacterial survival under these diverse conditions, we have identified Vc-NhaP1 as a K(+)(Na(+))/H(+) antiporter essential for V. cholerae growth at low environmental pH. Deletion of the V. cholerae nhaP1 gene caused growth inhibition when external potassium was either limited (100 mM and below) or in excess (400 mM and above). This growth defect was most apparent at mid-exponential phase, after 4-6 h of culture. Using a pH-sensitive GFP, cytosolic pH was shown to be dependent on K(+) in acidic external conditions in a Vc-NhaP1-dependent manner. When functionally expressed in an antiporterless Escherichia coli strain and assayed in everted membrane vesicles, Vc-NhaP1 operated as an electroneutral alkali cation/proton antiporter, exchanging K(+) or Na(+) ions for H(+) within a broad pH range (7.25-9.0). These data establish the putative V. cholerae NhaP1 protein as a functional K(+)(Na(+))/H(+) antiporter of the CPA1 family that is required for bacterial pH homeostasis and growth in an acidic environment.


Asunto(s)
Proteínas Bacterianas/metabolismo , Antiportadores de Potasio-Hidrógeno/metabolismo , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vibrio cholerae/crecimiento & desarrollo , Proteínas Bacterianas/genética , Clonación Molecular , Citoplasma/fisiología , Eliminación de Gen , Homeostasis , Concentración de Iones de Hidrógeno , Antiportadores de Potasio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/genética , Vibrio cholerae/genética , Vibrio cholerae/fisiología
4.
Biochem Cell Biol ; 89(2): 130-7, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21455265

RESUMEN

Na+/H+ antiporters are integral membrane proteins that exchange Na+ for H+ across the cytoplasmic or organellar membranes of virtually all living cells. They are essential for control of cellular pH, volume homeostasis, and regulation of Na+ levels. Na+/H+ antiporters have become increasingly characterized and are now becoming important drug targets. The recently identified NhaP family of Na+/H+ antiporters, from the CPA1 superfamily, contains proteins with a surprisingly broad collective range of transported cations, exchanging protons for alkali cations such as Na+, Li+, K+, or Rb+ as well as for Ca2+ and, possibly, NH4+. Questions about ion selectivity and the physiological impact of each particular NhaP antiporter are far from trivial. For example, Vc-NhaP2 from Vibrio cholerae has recently been shown to function in vivo as a specific K+/H+ antiporter while retaining the ability to exchange H+ for Na+ and bind (but not exchange with H+) Li+ in a competitive manner. These and other findings reviewed in this communication make antiporters of the NhaP type attractive systems to study intimate molecular mechanisms of cation exchange. In an evolutionary perspective, the NhaP family seems to be a phylogenetic entity undergoing active divergent evolution. In this minireview, to rationalize peculiarities of the cation specificity in the NhaP family, the "size-exclusion principle" and the idea of "ligand shading" are discussed.


Asunto(s)
Proteínas Bacterianas/metabolismo , Cationes/metabolismo , Protones , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vibrio cholerae/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Evolución Molecular , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Filogenia , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/clasificación , Intercambiadores de Sodio-Hidrógeno/genética , Vibrio cholerae/química
5.
Biochemistry ; 49(11): 2520-8, 2010 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-20163190

RESUMEN

The existence of bacterial K(+)/H(+) antiporters that prevent the overaccumulation of potassium in the cytoplasm was predicted by Peter Mitchell almost 50 years ago. The importance of K(+)/H(+) antiport for bacterial physiology is widely recognized, but its molecular mechanisms remain underinvestigated. Here, we demonstrate that a putative Na(+)/H(+) antiporter, Vc-NhaP2, protects cells of Vibrio cholerae growing at pH 6.0 from high concentrations of external K(+). Resistance of V. cholerae to Na(+) was found to be independent of Vc-NhaP2. When assayed in inside-out membrane vesicles derived from antiporter-deficient Escherichia coli, Vc-NhaP2 catalyzed the electroneutral K(+)(Rb(+))/H(+) exchange with a pH optimum of approximately 7.75 with an apparent K(m) for K(+) of 1.62 mM. In the absence of K(+), it exhibited Na(+)/H(+) antiport, albeit rather weakly. Interestingly, while Vc-NhaP2 cannot exchange Li(+) for protons, elimination of functional Vc-NhaP2 resulted in a significantly higher Li(+) resistance of V. cholerae cells growing at pH 6.0, suggesting the possibility of Vc-NhaP2-mediated Li(+)/K(+) antiport. The peculiar cation specificity of Vc-NhaP2 and the presence of its two additional paralogues in the same genome make this transporter an attractive model for detailed analysis of the structural determinants of the substrate specificity in alkali cation exchangers.


Asunto(s)
Proteínas Bacterianas/metabolismo , Hidrógeno/metabolismo , Potasio/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Vibrio cholerae/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Biocatálisis , Clonación Molecular , Concentración de Iones de Hidrógeno , Homología de Secuencia de Aminoácido , Intercambiadores de Sodio-Hidrógeno/química , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/aislamiento & purificación , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA