Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 134(3)2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33443102

RESUMEN

KRIT1 is a scaffolding protein that regulates multiple molecular mechanisms, including cell-cell and cell-matrix adhesion, and redox homeostasis and signaling. However, rather little is known about how KRIT1 is itself regulated. KRIT1 is found in both the cytoplasm and the nucleus, yet the upstream signaling proteins and mechanisms that regulate KRIT1 nucleocytoplasmic shuttling are not well understood. Here, we identify a key role for protein kinase C (PKC) in this process. In particular, we found that PKC activation promotes the redox-dependent cytoplasmic localization of KRIT1, whereas inhibition of PKC or treatment with the antioxidant N-acetylcysteine leads to KRIT1 nuclear accumulation. Moreover, we demonstrated that the N-terminal region of KRIT1 is crucial for the ability of PKC to regulate KRIT1 nucleocytoplasmic shuttling, and may be a target for PKC-dependent regulatory phosphorylation events. Finally, we found that silencing of PKCα, but not PKCδ, inhibits phorbol 12-myristate 13-acetate (PMA)-induced cytoplasmic enrichment of KRIT1, suggesting a major role for PKCα in regulating KRIT1 nucleocytoplasmic shuttling. Overall, our findings identify PKCα as a novel regulator of KRIT1 subcellular compartmentalization, thus shedding new light on the physiopathological functions of this protein.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteína KRIT1/metabolismo , Proteína Quinasa C-alfa , Células HeLa , Humanos , Fosforilación , Proteína Quinasa C-alfa/genética , Acetato de Tetradecanoilforbol
2.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-36498972

RESUMEN

BACKGROUND: Cerebral cavernous malformations (CCMs) are a major type of cerebrovascular lesions of proven genetic origin that occur in either sporadic (sCCM) or familial (fCCM) forms, the latter being inherited as an autosomal dominant condition linked to loss-of-function mutations in three known CCM genes. In contrast to fCCMs, sCCMs are rarely linked to mutations in CCM genes and are instead commonly and peculiarly associated with developmental venous anomalies (DVAs), suggesting distinct origins and common pathogenic mechanisms. CASE REPORT: A hemorrhagic sCCM in the right frontal lobe of the brain was surgically excised from a symptomatic 3 year old patient, preserving intact and pervious the associated DVA. MRI follow-up examination performed periodically up to 15 years after neurosurgery intervention demonstrated complete removal of the CCM lesion and no residual or relapse signs. However, 18 years after surgery, the patient experienced acute episodes of paresthesia due to a distant recurrence of a new hemorrhagic CCM lesion located within the same area as the previous one. A new surgical intervention was, therefore, necessary, which was again limited to the CCM without affecting the pre-existing DVA. Subsequent follow-up examination by contrast-enhanced MRI evidenced a persistent pattern of signal-intensity abnormalities in the bed of the DVA, including hyperintense gliotic areas, suggesting chronic inflammatory conditions. CONCLUSIONS: This case report highlights the possibility of long-term distant recurrence of hemorrhagic sCCMs associated with a DVA, suggesting that such recurrence is secondary to focal sterile inflammatory conditions generated by the DVA.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Preescolar , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico por imagen , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/cirugía , Recurrencia Local de Neoplasia , Imagen por Resonancia Magnética , Encéfalo/patología , Mutación
3.
Int J Mol Sci ; 23(19)2022 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-36232456

RESUMEN

KRIT1 loss-of-function mutations underlie the pathogenesis of Cerebral Cavernous Malformation (CCM), a major vascular disease affecting the central nervous system (CNS). However, KRIT1 is also expressed outside the CNS and modulates key regulators of metabolic and oxy-inflammatory pathways, including the master transcription factor FoxO1, suggesting a widespread functional significance. Herein, we show that the KRIT1/FoxO1 axis is implicated in liver metabolic functions and antioxidative/antiglycative defenses. Indeed, by performing comparative studies in KRIT1 heterozygous (KRIT1+/-) and wild-type mice, we found that KRIT1 haploinsufficiency resulted in FoxO1 expression/activity downregulation in the liver, and affected hepatic FoxO1-dependent signaling pathways, which are markers of major metabolic processes, including gluconeogenesis, glycolysis, mitochondrial respiration, and glycogen synthesis. Moreover, it caused sustained activation of the master antioxidant transcription factor Nrf2, hepatic accumulation of advanced glycation end-products (AGEs), and abnormal expression/activity of AGE receptors and detoxifying systems. Furthermore, it was associated with an impairment of food intake, systemic glucose disposal, and plasma levels of insulin. Specific molecular alterations detected in the liver of KRIT1+/- mice were also confirmed in KRIT1 knockout cells. Overall, our findings demonstrated, for the first time, that KRIT1 haploinsufficiency affects glucose homeostasis and liver metabolic and antioxidative/antiglycative functions, thus inspiring future basic and translational studies.


Asunto(s)
Insulinas , Factor 2 Relacionado con NF-E2 , Animales , Antioxidantes , Glucosa , Glucógeno , Proteína KRIT1 , Hígado , Ratones , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/genética
4.
Nature ; 498(7455): 492-6, 2013 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-23748444

RESUMEN

Cerebral cavernous malformation (CCM) is a vascular dysplasia, mainly localized within the brain and affecting up to 0.5% of the human population. CCM lesions are formed by enlarged and irregular blood vessels that often result in cerebral haemorrhages. CCM is caused by loss-of-function mutations in one of three genes, namely CCM1 (also known as KRIT1), CCM2 (OSM) and CCM3 (PDCD10), and occurs in both sporadic and familial forms. Recent studies have investigated the cause of vascular dysplasia and fragility in CCM, but the in vivo functions of this ternary complex remain unclear. Postnatal deletion of any of the three Ccm genes in mouse endothelium results in a severe phenotype, characterized by multiple brain vascular malformations that are markedly similar to human CCM lesions. Endothelial-to-mesenchymal transition (EndMT) has been described in different pathologies, and it is defined as the acquisition of mesenchymal- and stem-cell-like characteristics by the endothelium. Here we show that endothelial-specific disruption of the Ccm1 gene in mice induces EndMT, which contributes to the development of vascular malformations. EndMT in CCM1-ablated endothelial cells is mediated by the upregulation of endogenous BMP6 that, in turn, activates the transforming growth factor-ß (TGF-ß) and bone morphogenetic protein (BMP) signalling pathway. Inhibitors of the TGF-ß and BMP pathway prevent EndMT both in vitro and in vivo and reduce the number and size of vascular lesions in CCM1-deficient mice. Thus, increased TGF-ß and BMP signalling, and the consequent EndMT of CCM1-null endothelial cells, are crucial events in the onset and progression of CCM disease. These studies offer novel therapeutic opportunities for this severe, and so far incurable, pathology.


Asunto(s)
Progresión de la Enfermedad , Transición Epitelial-Mesenquimal , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Animales , Proteína Morfogenética Ósea 6/antagonistas & inhibidores , Proteína Morfogenética Ósea 6/metabolismo , Proteína Morfogenética Ósea 6/farmacología , Modelos Animales de Enfermedad , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Proteína KRIT1 , Ratones , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/deficiencia , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Factor de Crecimiento Transformador beta/antagonistas & inhibidores , Factor de Crecimiento Transformador beta/metabolismo , Regulación hacia Arriba
5.
Int J Mol Sci ; 20(19)2019 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-31590384

RESUMEN

Loss-of-function mutations of the gene encoding Krev interaction trapped protein 1 (KRIT1) are associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease characterized by abnormally enlarged and leaky capillaries and affecting 0.5% of the human population. However, growing evidence demonstrates that KRIT1 is implicated in the modulation of major redox-sensitive signaling pathways and mechanisms involved in adaptive responses to oxidative stress and inflammation, suggesting that its loss-of-function mutations may have pathological effects not limited to CCM disease. The aim of this study was to address whether KRIT1 loss-of-function predisposes to the development of pathological conditions associated with enhanced endothelial cell susceptibility to oxidative stress and inflammation, such as arterial endothelial dysfunction (ED) and atherosclerosis. Silencing of KRIT1 in human aortic endothelial cells (HAECs), coronary artery endothelial cells (HCAECs), and umbilical vein endothelial cells (HUVECs) resulted in increased expression of endothelial proinflammatory adhesion molecules vascular cell adhesion molecule 1 (VCAM-1) and intercellular adhesion molecule 1 (ICAM-1) and in enhanced susceptibility to tumor necrosis factor alpha (TNF-α)-induced apoptosis. These effects were associated with a downregulation of Notch1 activation that could be rescued by antioxidant treatment, suggesting that they are consequent to altered intracellular redox homeostasis induced by KRIT1 loss-of-function. Furthermore, analysis of the aorta of heterozygous KRIT1+/- mice fed a high-fructose diet to induce systemic oxidative stress and inflammation demonstrated a 1.6-fold increased expression of VCAM-1 and an approximately 2-fold enhanced fat accumulation (7.5% vs 3.6%) in atherosclerosis-prone regions, including the aortic arch and aortic root, as compared to corresponding wild-type littermates. In conclusion, we found that KRIT1 deficiency promotes ED, suggesting that, besides CCM, KRIT1 may be implicated in genetic susceptibility to the development of atherosclerotic lesions.


Asunto(s)
Aorta/metabolismo , Aterosclerosis/genética , Endotelio Vascular/metabolismo , Proteína KRIT1/genética , Mutación con Pérdida de Función , Animales , Aorta/patología , Apoptosis , Aterosclerosis/metabolismo , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Proteína KRIT1/deficiencia , Proteína KRIT1/metabolismo , Metabolismo de los Lípidos , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo , Receptor Notch1/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
6.
Circulation ; 131(3): 289-99, 2015 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-25486933

RESUMEN

BACKGROUND: Cerebral cavernous malformation (CCM) is a hemorrhagic stroke disease affecting up to 0.5% of North Americans that has no approved nonsurgical treatment. A subset of patients have a hereditary form of the disease due primarily to loss-of-function mutations in KRIT1, CCM2, or PDCD10. We sought to identify known drugs that could be repurposed to treat CCM. METHODS AND RESULTS: We developed an unbiased screening platform based on both cellular and animal models of loss of function of CCM2. Our discovery strategy consisted of 4 steps: an automated immunofluorescence and machine-learning-based primary screen of structural phenotypes in human endothelial cells deficient in CCM2, a secondary screen of functional changes in endothelial stability in these same cells, a rapid in vivo tertiary screen of dermal microvascular leak in mice lacking endothelial Ccm2, and finally a quaternary screen of CCM lesion burden in these same mice. We screened 2100 known drugs and bioactive compounds and identified 2 candidates, cholecalciferol (vitamin D3) and tempol (a scavenger of superoxide), for further study. Each drug decreased lesion burden in a mouse model of CCM vascular disease by ≈50%. CONCLUSIONS: By identifying known drugs as potential therapeutics for CCM, we have decreased the time, cost, and risk of bringing treatments to patients. Each drug also prompts additional exploration of biomarkers of CCM disease. We further suggest that the structure-function screening platform presented here may be adapted and scaled to facilitate drug discovery for diverse loss-of-function genetic vascular disease.


Asunto(s)
Neoplasias del Sistema Nervioso Central/tratamiento farmacológico , Modelos Animales de Enfermedad , Reposicionamiento de Medicamentos/métodos , Hemangioma Cavernoso del Sistema Nervioso Central/tratamiento farmacológico , Animales , Células Cultivadas , Neoplasias del Sistema Nervioso Central/patología , Colecalciferol/farmacología , Colecalciferol/uso terapéutico , Ensayos de Selección de Medicamentos Antitumorales/métodos , Células Endoteliales/efectos de los fármacos , Células Endoteliales/patología , Depuradores de Radicales Libres/farmacología , Depuradores de Radicales Libres/uso terapéutico , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Ratones , Ratones Noqueados , Ratones Transgénicos , Resultado del Tratamiento
7.
J Med Genet ; 50(8): 543-51, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749989

RESUMEN

BACKGROUND AND AIM: We identified a balanced de novo translocation involving chromosomes Xq25 and 8q24 in an eight year-old girl with a non-progressive form of congenital ataxia, cognitive impairment and cerebellar hypoplasia. METHODS AND RESULTS: Breakpoint definition showed that the promoter of the Protein Tyrosine Kinase 2 (PTK2, also known as Focal Adhesion Kinase, FAK) gene on chromosome 8q24.3 is translocated 2 kb upstream of the THO complex subunit 2 (THOC2) gene on chromosome Xq25. PTK2 is a well-known non-receptor tyrosine kinase whereas THOC2 encodes a component of the evolutionarily conserved multiprotein THO complex, involved in mRNA export from nucleus. The translocation generated a sterile fusion transcript under the control of the PTK2 promoter, affecting expression of both PTK2 and THOC2 genes. PTK2 is involved in cell adhesion and, in neurons, plays a role in axonal guidance, and neurite growth and attraction. However, PTK2 haploinsufficiency alone is unlikely to be associated with human disease. Therefore, we studied the role of THOC2 in the CNS using three models: 1) THOC2 ortholog knockout in C.elegans which produced functional defects in specific sensory neurons; 2) Thoc2 knockdown in primary rat hippocampal neurons which increased neurite extension; 3) Thoc2 knockdown in neuronal stem cells (LC1) which increased their in vitro growth rate without modifying apoptosis levels. CONCLUSION: We suggest that THOC2 can play specific roles in neuronal cells and, possibly in combination with PTK2 reduction, may affect normal neural network formation, leading to cognitive impairment and cerebellar congenital hypoplasia.


Asunto(s)
Cerebelo/anomalías , Cromosomas Humanos Par 8/genética , Quinasa 1 de Adhesión Focal/genética , Malformaciones del Sistema Nervioso/genética , Trastornos Psicomotores/genética , Proteínas de Unión al ARN/genética , Translocación Genética , Animales , Caenorhabditis elegans/genética , Línea Celular Transformada , Niño , Discapacidades del Desarrollo/complicaciones , Discapacidades del Desarrollo/genética , Femenino , Fusión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Malformaciones del Sistema Nervioso/complicaciones , Trastornos Psicomotores/complicaciones , Ratas
8.
Biochem Biophys Res Commun ; 438(1): 90-6, 2013 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-23872064

RESUMEN

miR-21 is overexpressed in tumors and it displays oncogenic activity. Here, we show that expression of miR-21 in primary tumors anticorrelates with KRIT1/CCM1, an interacting partner of the Ras-like GTPase Rap1, involved in Cerebral Cavernous Malformations (CCM). We present evidences that miR-21 silences KRIT1 by targeting its mRNA 3'UTR and that this interaction is involved in tumor growth control. In fact, miR-21 over-expression or KRIT1 knock-down promote anchorage independent tumor cell growth compared to controls, whereas the opposite is observed when anti-miR-21 or KRIT1 overexpression are employed. Our findings suggest that miR-21 promotes tumor cell growth, at least in part, by down-modulating the potential tumor suppressor KRIT1.


Asunto(s)
Neoplasias de la Mama/patología , Neoplasias de la Mama/fisiopatología , Regulación Neoplásica de la Expresión Génica/genética , MicroARNs/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Humanos , Proteína KRIT1 , Proteínas Asociadas a Microtúbulos/genética , Proteínas Proto-Oncogénicas/genética
9.
Antioxid Redox Signal ; 38(7-9): 496-528, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36047808

RESUMEN

Significance: KRIT1 (Krev interaction trapped 1) is a scaffolding protein that plays a critical role in vascular morphogenesis and homeostasis. Its loss-of-function has been unequivocally associated with the pathogenesis of Cerebral Cavernous Malformation (CCM), a major cerebrovascular disease of genetic origin characterized by defective endothelial cell-cell adhesion and ensuing structural alterations and hyperpermeability in brain capillaries. KRIT1 contributes to the maintenance of endothelial barrier function by stabilizing the integrity of adherens junctions and inhibiting the formation of actin stress fibers. Recent Advances: Among the multiple regulatory mechanisms proposed so far, significant evidence accumulated over the past decade has clearly shown that the role of KRIT1 in the stability of endothelial barriers, including the blood-brain barrier, is largely based on its involvement in the complex machinery governing cellular redox homeostasis and responses to oxidative stress and inflammation. KRIT1 loss-of-function has, indeed, been demonstrated to cause an impairment of major redox-sensitive mechanisms involved in spatiotemporal regulation of cell adhesion and signaling, which ultimately leads to decreased cell-cell junction stability and enhanced sensitivity to oxidative stress and inflammation. Critical Issues: This review explores the redox mechanisms that influence endothelial cell adhesion and barrier function, focusing on the role of KRIT1 in such mechanisms. We propose that this supports a novel model wherein redox signaling forms the common link between the various pathogenetic mechanisms and therapeutic approaches hitherto associated with CCM disease. Future Directions: A comprehensive characterization of the role of KRIT1 in redox control of endothelial barrier physiology and defense against oxy-inflammatory insults will provide valuable insights into the development of precision medicine strategies. Antioxid. Redox Signal. 38, 496-528.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Humanos , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Células Endoteliales/metabolismo , Transducción de Señal , Oxidación-Reducción , Inflamación , Proteínas Asociadas a Microtúbulos/metabolismo , Proteína KRIT1/metabolismo
10.
Biomedicines ; 11(2)2023 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-36831015

RESUMEN

Cerebral cavernous malformation (CCM) or cavernoma is a major vascular disease of genetic origin, whose main phenotypes occur in the central nervous system, and is currently devoid of pharmacological therapeutic strategies. Cavernomas can remain asymptomatic during a lifetime or manifest with a wide range of symptoms, including recurrent headaches, seizures, strokes, and intracerebral hemorrhages. Loss-of-function mutations in KRIT1/CCM1 are responsible for more than 50% of all familial cases, and have been clearly shown to affect cellular junctions, redox homeostasis, inflammatory responses, and angiogenesis. In this study, we investigated the therapeutic effects of multidrug-loaded lipid nanoemulsions in rescuing the pathological phenotype of CCM disease. The pro-autophagic rapamycin, antioxidant avenanthramide, and antiangiogenic bevacizumab were loaded into nanoemulsions, with the aim of reducing the major molecular dysfunctions associated with cavernomas. Through Western blot analysis of biomarkers in an in vitro CCM model, we demonstrated that drug-loaded lipid nanoemulsions rescue antioxidant responses, reactivate autophagy, and reduce the effect of pro-angiogenic factors better than the free drugs. Our results show the importance of developing a combinatorial preventive and therapeutic approach to reduce the risk of lesion formation and inhibit or completely revert the multiple hallmarks that characterize the pathogenesis and progression of cavernomas.

11.
Antioxidants (Basel) ; 11(7)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35883785

RESUMEN

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin that predisposes to seizures, focal neurological deficits and fatal intracerebral hemorrhage. It may occur sporadically or in familial forms, segregating as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. Its pathogenesis has been associated with loss-of-function mutations in three genes, namely KRIT1 (CCM1), CCM2 and PDCD10 (CCM3), which are implicated in defense mechanisms against oxidative stress and inflammation. Herein, we screened 21 Italian CCM cases using clinical exome sequencing and found six cases (~29%) with pathogenic variants in CCM genes, including a large 145−256 kb genomic deletion spanning the KRIT1 gene and flanking regions, and the KRIT1 c.1664C>T variant, which we demonstrated to activate a donor splice site in exon 16. The segregation of this cryptic splicing mutation was studied in a large Italian family (five affected and seven unaffected cases), and showed a largely heterogeneous clinical presentation, suggesting the implication of genetic modifiers. Moreover, by analyzing ad hoc gene panels, including a virtual panel of 23 cerebrovascular disease-related genes (Cerebro panel), we found two variants in NOTCH3 and PTEN genes, which could contribute to the abnormal oxidative stress and inflammatory responses to date implicated in CCM disease pathogenesis.

12.
Stem Cells ; 28(2): 247-57, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20039365

RESUMEN

Regulatory mechanisms pertaining to the self-renewal of stem cells remain incompletely understood. Here, we show that functional interactions between small GTPase Rap1 and the adhesion molecule E-cadherin uniquely regulate the self-renewal of human embryonic stem cells (hESCs). Inhibition of Rap1 suppresses colony formation and self-renewal of hESCs, whereas overexpression of Rap1 augments hESC clonogenicity. Rap1 does not directly influence the expression of the pluripotency genes Oct4 and Nanog. Instead, it affects the endocytic recycling pathway involved in the formation and maintenance of E-cadherin-mediated cell-cell cohesion, which is essential for the colony formation and self-renewal of hESCs. Conversely, distinct from epithelial cells, disruption of E-cadherin mediated cell-cell adhesions induces lysosome delivery and degradation of Rap1. This in turn leads to a further downregulation of E-cadherin function and a subsequent reduction in hESC clonogenic capacity. These findings provide the first demonstration that the interplay between Rap1 and E-cadherin along the endocytic recycling pathway serves as a timely and efficient mechanism to regulate hESC self-renewal. Given the availability of specific activators for Rap1, this work provides a new perspective to enable better maintenance of human pluripotent stem cells.


Asunto(s)
Cadherinas/metabolismo , Células Madre Embrionarias/citología , Células Madre Embrionarias/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Benzamidas/farmacología , Western Blotting , Cadherinas/genética , Diferenciación Celular/efectos de los fármacos , Diferenciación Celular/genética , Línea Celular , Humanos , Microscopía Fluorescente , ARN Interferente Pequeño , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Complejo Shelterina , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión a Telómeros/genética
13.
Free Radic Biol Med ; 172: 403-417, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-34175437

RESUMEN

Cerebral Cavernous Malformation (CCM) is a cerebrovascular disease of genetic origin affecting 0.5% of the population and characterized by abnormally enlarged and leaky capillaries that predispose to seizures, neurological deficits, and intracerebral hemorrhage (ICH). CCM occurs sporadically or is inherited as dominant condition with incomplete penetrance and highly variable expressivity. Three disease genes have been identified: KRIT1 (CCM1), CCM2 and CCM3. Previous results demonstrated that loss-of-function mutations of CCM genes cause pleiotropic effects, including defective autophagy, altered reactive oxygen species (ROS) homeostasis, and enhanced sensitivity to oxidative stress and inflammatory events, suggesting a novel unifying pathogenetic mechanism, and raising the possibility that CCM disease onset and severity are influenced by the presence of susceptibility and modifier genes. Consistently, genome-wide association studies (GWAS) in large and homogeneous cohorts of patients sharing the familial form of CCM disease and identical mutations in CCM genes have led to the discovery of distinct genetic modifiers of major disease severity phenotypes, such as development of numerous and large CCM lesions, and susceptibility to ICH. This review deals with the identification of genetic modifiers with a significant impact on inter-individual variability in CCM disease onset and severity, including highly polymorphic genes involved in oxidative stress, inflammatory and immune responses, such as cytochrome P450 monooxygenases (CYP), matrix metalloproteinases (MMP), and Toll-like receptors (TLR), pointing to their emerging prognostic value, and opening up new perspectives for risk stratification and personalized medicine strategies.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central , Estudio de Asociación del Genoma Completo , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Inflamación/genética , Proteína KRIT1/genética , Proteínas Asociadas a Microtúbulos/genética , Mutación , Estrés Oxidativo/genética , Polimorfismo Genético
14.
Expert Opin Drug Deliv ; 18(7): 849-876, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33406376

RESUMEN

Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.


Asunto(s)
Trastornos Cerebrovasculares , Hemangioma Cavernoso del Sistema Nervioso Central , Trastornos Cerebrovasculares/diagnóstico , Trastornos Cerebrovasculares/genética , Trastornos Cerebrovasculares/terapia , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Hemangioma Cavernoso del Sistema Nervioso Central/terapia , Humanos , Inflamación , Mutación , Nanomedicina
15.
Metab Eng ; 12(3): 223-32, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-19941969

RESUMEN

Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker's yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified as N-(E)-p-coumaroyl-3-hydroxyanthranilic acid by NMR. This compound is an amide condensation product of p-coumaric acid, which was supplied to the yeast, with 3-hydroxyanthranilic acid, which was unexpectedly recruited from the yeast metabolism by the HCT enzyme. N-(E)-p-coumaroyl-3-hydroxyanthranilic acid has not been described before, and it shows structural similarity to avenanthramides, a group of inflammation-inhibiting compounds present in oat. When applied to mouse fibroblasts, N-(E)-p-coumaroyl-3-hydroxyanthranilic acid induced a reduction of intracellular reactive oxygen species, indicating a potential therapeutic value for this novel compound.


Asunto(s)
Ácido Clorogénico/metabolismo , Cynara scolymus/genética , Cynara scolymus/metabolismo , Plantas/enzimología , Plantas/metabolismo , Ácido 3-Hidroxiantranílico/metabolismo , Amidas/metabolismo , Animales , Ácidos Cumáricos , Ésteres/metabolismo , Genes , Ratones , Fenoles/metabolismo , Plantas/genética , Propionatos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Levaduras/genética , Levaduras/metabolismo
16.
Exp Cell Res ; 315(2): 285-303, 2009 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-18992740

RESUMEN

KRIT1 is a disease gene responsible for Cerebral Cavernous Malformations (CCM). It encodes for a protein containing distinct protein-protein interaction domains, including three NPXY/F motifs and a FERM domain. Previously, we isolated KRIT1B, an isoform characterized by the alternative splicing of the 15th coding exon and suspected to cause CCM when abnormally expressed. Combining homology modeling and docking methods of protein-structure and ligand binding prediction with the yeast two-hybrid assay of in vivo protein-protein interaction and cellular biology analyses we identified both structural and functional differences between KRIT1A and KRIT1B isoforms. We found that the 15th exon encodes for the distal beta-sheet of the F3/PTB-like subdomain of KRIT1A FERM domain, demonstrating that KRIT1B is devoid of a functional PTB binding pocket. As major functional consequence, KRIT1B is unable to bind Rap1A, while the FERM domain of KRIT1A is even sufficient for this function. Furthermore, we found that a functional PTB subdomain enables the nucleocytoplasmic shuttling of KRIT1A, while its alteration confers a restricted cytoplasmic localization and a dominant negative role to KRIT1B. Importantly, we also demonstrated that KRIT1A, but not KRIT1B, may adopt a closed conformation through an intramolecular interaction involving the third NPXY/F motif at the N-terminus and the PTB subdomain of the FERM domain, and proposed a mechanism whereby an open/closed conformation switch regulates KRIT1A nuclear translocation and interaction with Rap1A in a mutually exclusive manner. As most mutations found in CCM patients affect the KRIT1 FERM domain, the new insights into the structure-function relationship of this domain may constitute a useful framework for understanding molecular mechanisms underlying CCM pathogenesis.


Asunto(s)
Malformaciones Vasculares del Sistema Nervioso Central/fisiopatología , Hemangioma Cavernoso del Sistema Nervioso Central/fisiopatología , Proteínas Asociadas a Microtúbulos/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas Proto-Oncogénicas/fisiología , Animales , Células COS , Línea Celular , Malformaciones Vasculares del Sistema Nervioso Central/genética , Chlorocebus aethiops , Simulación por Computador , Células HeLa , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteína KRIT1 , Ratones , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Modelos Moleculares , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Mutación Puntual , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Estructura Secundaria de Proteína , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Ratas , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Técnicas del Sistema de Dos Híbridos , Proteínas de Unión al GTP rap1/química , Proteínas de Unión al GTP rap1/genética , Proteínas de Unión al GTP rap1/metabolismo
17.
Methods Mol Biol ; 2152: 451-465, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524573

RESUMEN

Cerebral cavernous malformation (CCM) is a vascular disease of proven genetic origin, which may arise sporadically or can be inherited as an autosomal dominant condition with incomplete penetrance and highly variable expressivity. CCM disease exhibits a range of different phenotypes, including wide interindividual differences in lesion number, size, and susceptibility to intracerebral hemorrhage (ICH). Mutations of the KRIT1 gene account for over 50% of familial cases. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered homeostasis of intracellular reactive oxygen species (ROS) and abnormal activation of redox-sensitive transcription factors, which collectively result in pro-oxidative, pro-inflammatory, and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease. Consistently, these original discoveries have been confirmed and extended by subsequent findings showing mechanistic relationships between pleiotropic redox-dependent effects of KRIT1 loss-of-function and enhanced cell sensitivity to oxidative stress, which may eventually lead to cellular dysfunctions and CCM disease pathogenesis. In this chapter, we describe few basic methods used for qualitative and quantitative analysis of intracellular ROS in cellular models of CCM disease.


Asunto(s)
Técnica del Anticuerpo Fluorescente , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Biomarcadores , Línea Celular , Técnica del Anticuerpo Fluorescente/métodos , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Ratones , Microscopía Fluorescente , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Mitocondrias/metabolismo , Oxidación-Reducción , Estrés Oxidativo/genética , Superóxidos/metabolismo
18.
Methods Mol Biol ; 2152: 131-137, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524549

RESUMEN

Cerebral cavernous malformations (CCMs) is a disorder of endothelial cells predominantly localized in the brain. Although a complete inactivation of each CCM protein has been found in the affected endothelium of diseased patients and a necessary and additional role of microenvironment has been demonstrated to determine in vivo the occurrence of vascular lesions, a microvascular endothelial model based on knockdown of a CCM gene represents today a convenient method to study some of critical signaling events regulating pathogenesis of CCM. For these reasons, in our laboratory we developed a microvascular cerebral endothelial model of Krit1 deficiency performing silencing experiments of CCM1 gene (Krit1) with siRNA procedure.


Asunto(s)
Endotelio Vascular/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/diagnóstico , Fenotipo , Biomarcadores , Técnicas de Cultivo de Célula , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Expresión Génica , Técnicas de Silenciamiento del Gen , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Proteína KRIT1/genética , Proteína KRIT1/metabolismo , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , ARN Interferente Pequeño/genética , Transfección
19.
Methods Mol Biol ; 2152: 371-375, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524565

RESUMEN

Cerebral cavernous malformation (CCM) proteins play critical roles for endothelial cell functions, including cytoskeletal remodeling, cell-cell interactions, cell polarity, tube formation, and angiogenesis. It has been shown that the mutation of even one of the CCM genes involved in CCMs can determine an alteration in the angiogenesis process, but the precise mechanism is yet to be clarified.Here using a model of cerebral microvascular endothelial cells (hBMEC) transiently silenced by CCM1, we tried to mimic the physiological conditions that occur in the presence of CCM1 gene know-down evaluating their ability to form tube structures through an in vitro angiogenesis assay.


Asunto(s)
Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Microvasos/metabolismo , Neovascularización Patológica/metabolismo , Fenotipo , Técnicas de Cultivo de Célula , Células Cultivadas , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Humanos , Proteína KRIT1/genética , Proteína KRIT1/metabolismo
20.
Methods Mol Biol ; 2152: 417-426, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524569

RESUMEN

Cerebral cavernous malformations (CCM) is a familial or sporadic rare disorder that is characterized by capillary vascular lesions with a mulberry-like appearance on MRI scans. Three distinct genes have been associated to CCM disease, known as CCM1/KRIT1, CCM2/MGC4607, and CCM3/PDCD10. Loss-of-functions mutations on these genes lead to deregulation in multiple signaling pathways, thereby resulting in disturbed vessel organization and function. Insufficient autophagy has been observed upon downregulation of all three CCM genes, both in cells and human patient tissues, revealed as aberrant accumulation of the autophagy receptor p62/SQSTM1. The autophagic process is conceived as an adaptive response to stress and is essential for the maintenance of cellular homeostasis. The aim of this review is to briefly summarize the current knowledge on the role of autophagy in CCM disease and to furnish a detailed protocol for detecting and measuring p62/SQSTM1 cytoplasmic aggregates through immunofluorescence technique.


Asunto(s)
Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Agregado de Proteínas , Agregación Patológica de Proteínas/metabolismo , Proteína Sequestosoma-1/metabolismo , Autofagia/genética , Biomarcadores , Células Cultivadas , Susceptibilidad a Enfermedades , Células Endoteliales/metabolismo , Técnica del Anticuerpo Fluorescente , Hemangioma Cavernoso del Sistema Nervioso Central/etiología , Hemangioma Cavernoso del Sistema Nervioso Central/patología , Humanos , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA