RESUMEN
The most recent Ebola virus outbreak in West Africa, which was unprecedented in the number of cases and fatalities, geographic distribution, and number of nations affected, highlights the need for safe, effective, and readily available antiviral agents for treatment and prevention of acute Ebola virus (EBOV) disease (EVD) or sequelae. No antiviral therapeutics have yet received regulatory approval or demonstrated clinical efficacy. Here we report the discovery of a novel small molecule GS-5734, a monophosphoramidate prodrug of an adenosine analogue, with antiviral activity against EBOV. GS-5734 exhibits antiviral activity against multiple variants of EBOV and other filoviruses in cell-based assays. The pharmacologically active nucleoside triphosphate (NTP) is efficiently formed in multiple human cell types incubated with GS-5734 in vitro, and the NTP acts as an alternative substrate and RNA-chain terminator in primer-extension assays using a surrogate respiratory syncytial virus RNA polymerase. Intravenous administration of GS-5734 to nonhuman primates resulted in persistent NTP levels in peripheral blood mononuclear cells (half-life, 14 h) and distribution to sanctuary sites for viral replication including testes, eyes, and brain. In a rhesus monkey model of EVD, once-daily intravenous administration of 10 mg kg(-1) GS-5734 for 12 days resulted in profound suppression of EBOV replication and protected 100% of EBOV-infected animals against lethal disease, ameliorating clinical disease signs and pathophysiological markers, even when treatments were initiated three days after virus exposure when systemic viral RNA was detected in two out of six treated animals. These results show the first substantive post-exposure protection by a small-molecule antiviral compound against EBOV in nonhuman primates. The broad-spectrum antiviral activity of GS-5734 in vitro against other pathogenic RNA viruses, including filoviruses, arenaviruses, and coronaviruses, suggests the potential for wider medical use. GS-5734 is amenable to large-scale manufacturing, and clinical studies investigating the drug safety and pharmacokinetics are ongoing.
Asunto(s)
Alanina/análogos & derivados , Antivirales/uso terapéutico , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Macaca mulatta/virología , Ribonucleótidos/uso terapéutico , Adenosina Monofosfato/análogos & derivados , Alanina/farmacocinética , Alanina/farmacología , Alanina/uso terapéutico , Secuencia de Aminoácidos , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Línea Celular Tumoral , Ebolavirus/efectos de los fármacos , Femenino , Células HeLa , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Datos de Secuencia Molecular , Especificidad de Órganos , Profármacos/farmacocinética , Profármacos/farmacología , Profármacos/uso terapéutico , Ribonucleótidos/farmacocinética , Ribonucleótidos/farmacologíaRESUMEN
Filoviruses are emerging pathogens and causative agents of viral haemorrhagic fever. Case fatality rates of filovirus disease outbreaks are among the highest reported for any human pathogen, exceeding 90% (ref. 1). Licensed therapeutic or vaccine products are not available to treat filovirus diseases. Candidate therapeutics previously shown to be efficacious in non-human primate disease models are based on virus-specific designs and have limited broad-spectrum antiviral potential. Here we show that BCX4430, a novel synthetic adenosine analogue, inhibits infection of distinct filoviruses in human cells. Biochemical, reporter-based and primer-extension assays indicate that BCX4430 inhibits viral RNA polymerase function, acting as a non-obligate RNA chain terminator. Post-exposure intramuscular administration of BCX4430 protects against Ebola virus and Marburg virus disease in rodent models. Most importantly, BCX4430 completely protects cynomolgus macaques from Marburg virus infection when administered as late as 48 hours after infection. In addition, BCX4430 exhibits broad-spectrum antiviral activity against numerous viruses, including bunyaviruses, arenaviruses, paramyxoviruses, coronaviruses and flaviviruses. This is the first report, to our knowledge, of non-human primate protection from filovirus disease by a synthetic drug-like small molecule. We provide additional pharmacological characterizations supporting the potential development of BCX4430 as a countermeasure against human filovirus diseases and other viral diseases representing major public health threats.
Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Infecciones por Filoviridae/prevención & control , Infecciones por Filoviridae/virología , Filoviridae/efectos de los fármacos , Nucleósidos de Purina/farmacología , Adenina/análogos & derivados , Administración Oral , Animales , Antivirales/administración & dosificación , Antivirales/química , Antivirales/farmacocinética , ARN Polimerasas Dirigidas por ADN/antagonistas & inhibidores , ARN Polimerasas Dirigidas por ADN/metabolismo , Modelos Animales de Enfermedad , Ebolavirus/efectos de los fármacos , Filoviridae/enzimología , Fiebre Hemorrágica Ebola/prevención & control , Fiebre Hemorrágica Ebola/virología , Humanos , Inyecciones Intramusculares , Macaca fascicularis/virología , Enfermedad del Virus de Marburg/prevención & control , Enfermedad del Virus de Marburg/virología , Marburgvirus/efectos de los fármacos , Nucleósidos de Purina/administración & dosificación , Nucleósidos de Purina/química , Nucleósidos de Purina/farmacocinética , Pirrolidinas , ARN/biosíntesis , Factores de TiempoRESUMEN
BACKGROUND: In-depth examination of the plasma proteomic response to infection with a wide variety of pathogens can assist in the development of new diagnostic paradigms, while providing insight into the interdependent pathogenic processes which encompass a host's immunological and physiological responses. Ebola virus (EBOV) causes a highly lethal infection termed Ebola virus disease (EVD) in primates and humans. The Gram negative non-spore forming bacillus Burkholderia pseudomallei (Bp) causes melioidosis in primates and humans, characterized by severe pneumonia with high mortality. We sought to examine the host response to infection with these two bio-threat pathogens using established animal models to provide information on the feasibility of pre-symptomatic diagnosis, since the induction of host molecular signaling networks can occur before clinical presentation and pathogen detection. METHODS: Herein we report the quantitative proteomic analysis of plasma collected at various times of disease progression from 10 EBOV-infected and 5 Bp-infected nonhuman primates (NHP). Our strategy employed high resolution LC-MS/MS and a peptide-tagging approach for relative protein quantitation. In each infection type, for all proteins with > 1.3 fold abundance change at any post-infection time point, a direct comparison was made with levels obtained from plasma collected daily from 5 naïve rhesus macaques, to determine the fold changes that were significant, and establish the natural variability of abundance for endogenous plasma proteins. RESULTS: A total of 41 plasma proteins displayed significant alterations in abundance during EBOV infection, and 28 proteins had altered levels during Bp infection, when compared to naïve NHPs. Many major acute phase proteins quantitated displayed similar fold-changes between the two infection types but exhibited different temporal dynamics. Proteins related to the clotting cascade, immune signaling and complement system exhibited significant differential abundance during infection with EBOV or Bp, indicating a specificity of the response. CONCLUSIONS: These results advance our understanding of the global plasma proteomic response to EBOV and Bp infection in relevant primate models for human disease and provide insight into potential innate immune response differences between viral and bacterial infections.
RESUMEN
A dynamic actin cytoskeleton is necessary for viral entry, intracellular migration, and virion release. For HIV-1 infection, during entry, the virus triggers early actin activity by hijacking chemokine coreceptor signaling, which activates a host dependency factor, cofilin, and its kinase, the LIM domain kinase (LIMK). Although knockdown of human LIM domain kinase 1 (LIMK1) with short hairpin RNA (shRNA) inhibits HIV infection, no specific small-molecule inhibitor of LIMK has been available. Here, we describe the design and discovery of novel classes of small-molecule inhibitors of LIMK for inhibiting HIV infection. We identified R10015 as a lead compound that blocks LIMK activity by binding to the ATP-binding pocket. R10015 specifically blocks viral DNA synthesis, nuclear migration, and virion release. In addition, R10015 inhibits multiple viruses, including Zaire ebolavirus (EBOV), Rift Valley fever virus (RVFV), Venezuelan equine encephalitis virus (VEEV), and herpes simplex virus 1 (HSV-1), suggesting that LIMK inhibitors could be developed as a new class of broad-spectrum antiviral drugs.IMPORTANCE The actin cytoskeleton is a structure that gives the cell shape and the ability to migrate. Viruses frequently rely on actin dynamics for entry and intracellular migration. In cells, actin dynamics are regulated by kinases, such as the LIM domain kinase (LIMK), which regulates actin activity through phosphorylation of cofilin, an actin-depolymerizing factor. Recent studies have found that LIMK/cofilin are targeted by viruses such as HIV-1 for propelling viral intracellular migration. Although inhibiting LIMK1 expression blocks HIV-1 infection, no highly specific LIMK inhibitor is available. This study describes the design, medicinal synthesis, and discovery of small-molecule LIMK inhibitors for blocking HIV-1 and several other viruses and emphasizes the feasibility of developing LIMK inhibitors as broad-spectrum antiviral drugs.
Asunto(s)
Antivirales/farmacología , Inhibidores Enzimáticos/farmacología , VIH-1/efectos de los fármacos , Quinasas Lim/antagonistas & inhibidores , Liberación del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/síntesis química , Antivirales/aislamiento & purificación , Células Cultivadas , Ebolavirus/efectos de los fármacos , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/aislamiento & purificación , VIH-1/fisiología , Herpesvirus Humano 1/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Virus de la Fiebre del Valle del Rift/efectos de los fármacosRESUMEN
Activated protein kinase R (PKR) plays a vital role in antiviral defense primarily by inhibiting protein synthesis and augmenting interferon responses. Many viral proteins have adopted unique strategies to counteract the deleterious effects of PKR. The NSs (Non-structural s) protein which is encoded by Rift Valley fever virus (RVFV) promotes early PKR proteasomal degradation through a previously undefined mechanism. In this study, we demonstrate that NSs carries out this activity by assembling the SCF (SKP1-CUL1-F-box)(FBXW11) E3 ligase. NSs binds to the F-box protein, FBXW11, via the six amino acid sequence DDGFVE called the degron sequence and recruits PKR through an alternate binding site to the SCF(FBXW11) E3 ligase. We further show that disrupting the assembly of the SCF(FBXW11-NSs) E3 ligase with MLN4924 (a small molecule inhibitor of SCF E3 ligase activity) or NSs degron viral mutants or siRNA knockdown of FBXW11 can block PKR degradation. Surprisingly, under these conditions when PKR degradation was blocked, NSs was essential and sufficient to activate PKR causing potent inhibition of RVFV infection by suppressing viral protein synthesis. These antiviral effects were antagonized by the loss of PKR expression or with a NSs deleted mutant virus. Therefore, early PKR activation by disassembly of SCF(FBXW11-NSs) E3 ligase is sufficient to inhibit RVFV infection. Furthermore, FBXW11 and BTRC are the two homologues of the ßTrCP (Beta-transducin repeat containing protein) gene that were previously described to be functionally redundant. However, in RVFV infection, among the two homologues of ßTrCP, FBXW11 plays a dominant role in PKR degradation and is the limiting factor in the assembly of the SCF(FBXW11) complex. Thus, FBXW11 serves as a master regulator of RVFV infection by promoting PKR degradation. Overall these findings provide new insights into NSs regulation of PKR activity and offer potential opportunities for therapeutic intervention of RVFV infection.
Asunto(s)
Proteínas F-Box/metabolismo , Virus de la Fiebre del Valle del Rift , Proteínas no Estructurales Virales/metabolismo , Replicación Viral/genética , Animales , Antivirales/farmacología , Línea Celular , Proteínas Cullin/metabolismo , Genes Reguladores/genética , Humanos , Fosforilación/genética , Ubiquitina-Proteína Ligasas/metabolismoRESUMEN
We show that interferon-induced transmembrane protein 1 (IFITM-1), IFITM-2, and IFITM-3 exhibit a broad spectrum of antiviral activity against several members of the Bunyaviridae family, including Rift Valley fever virus (RVFV), La Crosse virus, Andes virus, and Hantaan virus, all of which can cause severe disease in humans and animals. We found that RVFV was restricted by IFITM-2 and -3 but not by IFITM-1, whereas the remaining viruses were equally restricted by all IFITMs. Indeed, at low doses of alpha interferon (IFN-α), IFITM-2 and -3 mediated more than half of the antiviral activity of IFN-α against RVFV. IFITM-2 and -3 restricted RVFV infection mostly by preventing virus membrane fusion with endosomes, while they had no effect on virion attachment to cells, endocytosis, or viral replication kinetics. We found that large fractions of IFITM-2 and IFITM-3 occupy vesicular compartments that are distinct from the vesicles coated by IFITM-1. In addition, although overexpression of all IFITMs expanded vesicular and acidified compartments within cells, there were marked phenotypic differences among the vesicular compartments occupied by IFITMs. Collectively, our data provide new insights into the possible mechanisms by which the IFITM family members restrict distinct viruses.
Asunto(s)
Antígenos de Diferenciación/inmunología , Interacciones Huésped-Patógeno , Proteínas de la Membrana/inmunología , Proteínas de Unión al ARN/inmunología , Virus de la Fiebre del Valle del Rift/inmunología , Virus de la Fiebre del Valle del Rift/fisiología , Internalización del Virus , Animales , Línea Celular , Virus Hantaan/inmunología , Virus Hantaan/fisiología , Orthohantavirus/inmunología , Orthohantavirus/fisiología , Humanos , Interferón-alfa/inmunología , Virus La Crosse/inmunología , Virus La Crosse/fisiologíaRESUMEN
With the exception of Reston and Lloviu viruses, filoviruses (marburgviruses, ebolaviruses, and "cuevaviruses") cause severe viral hemorrhagic fevers in humans. Filoviruses use a class I fusion protein, GP(1,2), to bind to an unknown, but shared, cell surface receptor to initiate virus-cell fusion. In addition to GP(1,2), ebolaviruses and cuevaviruses, but not marburgviruses, express two secreted glycoproteins, soluble GP (sGP) and small soluble GP (ssGP). All three glycoproteins have identical N termini that include the receptor-binding region (RBR) but differ in their C termini. We evaluated the effect of the secreted ebolavirus glycoproteins on marburgvirus and ebolavirus cell entry, using Fc-tagged recombinant proteins. Neither sGP-Fc nor ssGP-Fc bound to filovirus-permissive cells or inhibited GP(1,2)-mediated cell entry of pseudotyped retroviruses. Surprisingly, several Fc-tagged Δ-peptides, which are small C-terminal cleavage products of sGP secreted by ebolavirus-infected cells, inhibited entry of retroviruses pseudotyped with Marburg virus GP(1,2), as well as Marburg virus and Ebola virus infection in a dose-dependent manner and at low molarity despite absence of sequence similarity to filovirus RBRs. Fc-tagged Δ-peptides from three ebolaviruses (Ebola virus, Sudan virus, and Taï Forest virus) inhibited GP(1,2)-mediated entry and infection of viruses comparably to or better than the Fc-tagged RBRs, whereas the Δ-peptide-Fc of an ebolavirus nonpathogenic for humans (Reston virus) and that of an ebolavirus with lower lethality for humans (Bundibugyo virus) had little effect. These data indicate that Δ-peptides are functional components of ebolavirus proteomes. They join cathepsins and integrins as novel modulators of filovirus cell entry, might play important roles in pathogenesis, and could be exploited for the synthesis of powerful new antivirals.
Asunto(s)
Antivirales/metabolismo , Ebolavirus/efectos de los fármacos , Fragmentos Fc de Inmunoglobulinas/metabolismo , Marburgvirus/efectos de los fármacos , Proteínas Virales/metabolismo , Internalización del Virus/efectos de los fármacos , Animales , Productos Biológicos/metabolismo , Línea Celular , Ebolavirus/fisiología , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Marburgvirus/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Virales/genéticaRESUMEN
We screened â¼2,200 compounds known to be safe in people for the ability to reduce the amount of virion-associated hepatitis B virus (HBV) DNA in the culture medium of producer cells. These efforts led to the discovery of an alkylated porphyrin, chlorophyllide, as the compound that achieved the greatest reduction in signal. Here we report that chlorophyllide directly and quantitatively disrupted HBV virions at micromolar concentrations, resulting in the loss of all detectable virion DNA, without detectably affecting cell viability or intracellular viral gene products. Chemophores of chlorophyllide were also tested. Chlorin e6, a metal-free chlorophyllide-like molecule, showed the strongest antiviral activity against HBV as well as profound antiviral effects on other enveloped viruses, such as hepatitis C virus (HCV), human immunodeficiency virus (HIV), dengue virus (DENV), Marburg virus (MARV), Tacaribe virus (TCRV), and Junin viruses (JUNV). Remarkably, chlorin e6 inactivated DENV at subnanomolar-level concentrations. However, the compound had no antiviral effect against encephalomyocarditis virus and adenovirus, suggesting that chlorin e6 may be less active or inactive against nonenveloped viruses. Although other porphyrin derivatives have been previously reported to possess antiviral activity, this is the first analysis of the biochemical impact of chlorophyllide and chlorin e6 against HBV and of the dramatic anti-infectivity impact upon DENV. The possible application of this family of compounds as antiviral agents, as microbicides and systemic virus neutralizing agents, is discussed.
Asunto(s)
Antivirales/farmacología , Arenavirus/efectos de los fármacos , Clorofilidas/farmacología , Filoviridae/efectos de los fármacos , Flavivirus/efectos de los fármacos , Hepadnaviridae/efectos de los fármacos , Porfirinas/farmacología , Arenavirus/clasificación , Virus del Dengue/efectos de los fármacos , Filoviridae/clasificación , Flavivirus/clasificación , Células Hep G2 , Hepadnaviridae/clasificación , Virus de la Hepatitis B/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana/métodos , Porfirinas/químicaRESUMEN
Bone marrow stromal antigen 2 (BST-2/tetherin) is a cellular membrane protein that inhibits the release of HIV-1. We show for the first time, using infectious viruses, that BST-2 also inhibits egress of arenaviruses but has no effect on filovirus replication and spread. Specifically, infectious Lassa virus (LASV) release significantly decreased or increased in human cells in which BST-2 was either stably expressed or knocked down, respectively. In contrast, replication and spread of infectious Zaire ebolavirus (ZEBOV) and Lake Victoria marburgvirus (MARV) were not affected by these conditions. Replication of infectious Rift Valley fever virus (RVFV) and cowpox virus (CPXV) was also not affected by BST-2 expression. Elevated cellular levels of human or murine BST-2 inhibited the release of virus-like particles (VLPs) consisting of the matrix proteins of multiple highly virulent NIAID Priority Pathogens, including arenaviruses (LASV and Machupo virus [MACV]), filoviruses (ZEBOV and MARV), and paramyxoviruses (Nipah virus). Although the glycoproteins of filoviruses counteracted the antiviral activity of BST-2 in the context of VLPs, they could not rescue arenaviral (LASV and MACV) VLP release upon BST-2 overexpression. Furthermore, we did not observe colocalization of filoviral glycoproteins with BST-2 during infection with authentic viruses. None of the arenavirus-encoded proteins rescued budding of VLPs in the presence of BST-2. Our results demonstrate that BST-2 might be a broad antiviral factor with the ability to restrict release of a wide variety of human pathogens. However, at least filoviruses, RVFV, and CPXV are immune to its inhibitory effect.
Asunto(s)
Antígenos CD/fisiología , Filoviridae/patogenicidad , Virus Lassa/patogenicidad , Glicoproteínas de Membrana/fisiología , Animales , Antígenos CD/genética , Arenavirus del Nuevo Mundo/genética , Arenavirus del Nuevo Mundo/patogenicidad , Arenavirus del Nuevo Mundo/fisiología , Secuencia de Bases , Línea Celular , ADN Viral/genética , Ebolavirus/genética , Ebolavirus/patogenicidad , Ebolavirus/fisiología , Filoviridae/genética , Filoviridae/fisiología , Proteínas Ligadas a GPI/antagonistas & inhibidores , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/fisiología , Técnicas de Silenciamiento del Gen , Células HeLa , Interacciones Huésped-Patógeno/fisiología , Humanos , Virus Lassa/genética , Virus Lassa/fisiología , Marburgvirus/genética , Marburgvirus/patogenicidad , Marburgvirus/fisiología , Glicoproteínas de Membrana/genética , Ratones , Virus Nipah/genética , Virus Nipah/patogenicidad , Virus Nipah/fisiología , ARN Interferente Pequeño/genética , Transfección , Liberación del Virus/fisiologíaRESUMEN
Introduction: Inactivation of biological agents and particularly select agents has come under increased scrutiny since the US Army inadvertently shipped live anthrax both inside and outside the US, leading to more stringent regulations regarding inactivation. Methods: Formalin and Trizol® LS were used to inactivate virus samples in complex matrices. Cytotoxic chemicals were removed using either desalting or concentrating columns or through dilution using HYPERFlasks. Efficacy of inactivation was evaluated either through plaque assay or immunofluorescence assay. Results: All virus samples and tissue specimens were successfully inactivated using either formalin or Trizol® LS. Both the desalting columns and concentrating columns were able to remove cytotoxic chemicals to facilitate viral amplification in controls. Dilution of cytotoxic chemicals through HYPERFlasks was also successful provided that media was changed completely within 48 hours of first cell passage. Discussion: All inactivation testing demonstrates that both formalin and Trizol® LS successfully inactivate virus-infected cell lines and tissues, which is consistent with previously published literature. Each sample cleanup method has its benefits and pitfalls. Desalting columns can process the largest sample size but are also susceptible to plugging and degradation, whereas concentrating columns are not as vulnerable but can only process 5% of the sample load per run. Conclusion: Based on our results along with those of our colleagues, it is recommended that the regulatory authorities re-evaluate the requirements for each entity to validate well-established inactivation methods in house because there would be limited benefits despite the considerable resources required for this effort.
RESUMEN
Ebola virus (EBOV) causes a deadly hemorrhagic fever in humans and non-human primates. There is currently no FDA-approved vaccine or medication to counter this disease. Here, we report on the design, synthesis and anti-viral activities of two classes of compounds which show high potency against EBOV in both in vitro cell culture assays and in vivo mouse models Ebola viral disease. These compounds incorporate the structural features of cationic amphiphilic drugs (CAD), i.e they possess both a hydrophobic domain and a hydrophilic domain consisting of an ionizable amine functional group. These structural features enable easily diffusion into cells but once inside an acidic compartment their amine groups became protonated, ionized and remain trapped inside the acidic compartments such as late endosomes and lysosomes. These compounds, by virtue of their lysomotrophic functions, blocked EBOV entry. However, unlike other drugs containing a CAD moiety including chloroquine and amodiaquine, compounds reported in this study display faster kinetics of accumulation in the lysosomes, robust expansion of late endosome/lysosomes, relatively more potent suppression of lysosome fusion with other vesicular compartments and inhibition of cathepsins activities, all of which play a vital role in anti-EBOV activity. Furthermore, the diazachrysene 2 (ZSML08) that showed most potent activity against EBOV in in vitro cell culture assays also showed significant survival benefit with 100% protection in mouse models of Ebola virus disease, at a low dose of 10â¯mg/kg/day. Lastly, toxicity studies in vivo using zebrafish models suggest no developmental defects or toxicity associated with these compounds. Overall, these studies describe two new pharmacophores that by virtue of being potent lysosomotrophs, display potent anti-EBOV activities both in vitro and in vivo animal models of EBOV disease.
Asunto(s)
Antivirales/química , Crisenos/química , Ebolavirus/efectos de los fármacos , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Animales , Antivirales/farmacología , Antivirales/toxicidad , Crisenos/farmacología , Crisenos/toxicidad , Lisosomas/metabolismo , Ratones , Tensoactivos , Internalización del Virus/efectos de los fármacos , Pez CebraRESUMEN
Filoviridae currently includes five official and one proposed genera. Genus Ebolavirus includes five established and one proposed ebolavirus species for Bombali virus (BOMV), Bundibugyo virus (BDBV), Ebola virus (EBOV), Reston virus (RESTV), Sudan virus (SUDV) and Taï Forest virus (TAFV), and genus Marburgvirus includes a single species for Marburg virus (MARV) and Ravn virus (RAVV). Ebola virus (EBOV) has emerged as a significant public health concern since the 2013-2016 Ebola Virus Disease outbreak in Western Africa. Currently, there are no therapeutics approved and the need for Ebola-specific therapeutics remains a gap. In search for anti-Ebola therapies we tested the idea of using inhibitory properties of peptides corresponding to the C-terminal heptad-repeat (HR2) domains of class I fusion proteins against EBOV infection. The fusion protein GP2 of EBOV belongs to class I, suggesting that a similar strategy to HIV may be applied to inhibit EBOV infection. The serum half-life of peptides was expanded by cholesterol conjugation to allow daily dosing. The peptides were further constrained to stabilize a helical structure to increase the potency of inhibition. The EC50s of lead peptides were in low micromolar range, as determined by a high-content imaging test of EBOV-infected cells. Lead peptides were tested in an EBOV lethal mouse model and efficacy of the peptides were determined following twice-daily administration of peptides for 9 days. The most potent peptide was able to protect mice from lethal challenge of mouse-adapted Ebola virus. These data show that engineered peptides coupled with cholesterol can inhibit viral production, protect mice against lethal EBOV infection, and may be used to build novel therapeutics against EBOV.
Asunto(s)
Antivirales/farmacología , Ebolavirus/efectos de los fármacos , Marburgvirus/efectos de los fármacos , Péptidos/farmacología , Secuencia de Aminoácidos , Animales , Antivirales/química , Línea Celular , Colesterol/química , Modelos Animales de Enfermedad , Fiebre Hemorrágica Ebola/virología , Enfermedad del Virus de Marburg/virología , Ratones , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Péptidos/química , Conformación Proteica , Relación Estructura-ActividadRESUMEN
Ebola and Marburg are filoviruses and biosafety level 4 pathogens responsible for causing severe hemorrhagic fevers in humans with mortality rates up to 90%. The most recent outbreak in West Africa resulted in approximately 11,310 deaths in 28,616 reported cases. Currently there are no FDA-approved vaccines or therapeutics to treat infections of these deadly viruses. Recently we screened an FDA-approved drug library and identified numerous G protein-coupled receptor (GPCR) antagonists including antihistamines possessing anti-filovirus properties. Antihistamines are attractive targets for drug repurposing because of their low cost and ease of access due to wide use. In this report we identify common over the counter antihistamines, such as diphenhydramine (Benadryl) and chlorcyclizine (Ahist) as potential candidates for repurposing as anti-filovirus agents. Furthermore, we demonstrate that this potential is wide-spread through the 1st generation of H1-specific antihistamines but is not present in newer drugs or drugs targeting H2, H3 and H4 receptors. We showed that the filovirus entry inhibition is not dependent on the classical antagonism of cell surface histamine or muscarinic acetylcholine receptors but occurs in the endosome, like the cathepsin inhibitor CA-074. Finally, using extensive docking studies we showed the potential for these drugs to bind directly to the EBOV-GP at the same site as toremifene. These findings suggest that the 1st generation antihistamines are excellent candidates for repurposing as anti-filovirus therapeutics and can be further optimized for removal of unwanted histamine or muscarinic receptor interactions without loss of anti-filovirus efficacy.
Asunto(s)
Antivirales/farmacología , Reposicionamiento de Medicamentos , Filoviridae/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Células A549 , Difenhidramina/farmacología , Evaluación Preclínica de Medicamentos , Células HEK293 , Humanos , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Piperazinas/farmacología , Internalización del Virus/efectos de los fármacosRESUMEN
Sexual transmission of filoviruses was first reported in 1968 after an outbreak of Marburg virus (MARV) disease and recently caused flare-ups of Ebola virus disease in the 2013-2016 outbreak. How filoviruses establish testicular persistence and are shed in semen remain unknown. We discovered that persistent MARV infection of seminiferous tubules, an immune-privileged site that harbors sperm production, is a relatively common event in crab-eating macaques that survived infection after antiviral treatment. Persistence triggers severe testicular damage, including spermatogenic cell depletion and inflammatory cell invasion. MARV mainly persists in Sertoli cells, leading to breakdown of the blood-testis barrier formed by inter-Sertoli cell tight junctions. This disruption is accompanied by local infiltration of immunosuppressive CD4+Foxp3+ regulatory T cells. Our study elucidates cellular events associated with testicular persistence that may promote sexual transmission of filoviruses and suggests that targeting immunosuppression may be warranted to clear filovirus persistence in damaged immune-privileged sites.
Asunto(s)
Enfermedad del Virus de Marburg/virología , Marburgvirus/fisiología , Enfermedades de los Primates/virología , Testículo/virología , Animales , Macaca , Masculino , Enfermedad del Virus de Marburg/inmunología , Enfermedad del Virus de Marburg/metabolismo , Enfermedades de los Primates/inmunología , Enfermedades de los Primates/metabolismo , Células de Sertoli/metabolismo , Células de Sertoli/virología , Sobrevivientes , Linfocitos T Reguladores/inmunología , Uniones Estrechas/metabolismo , Uniones Estrechas/virologíaRESUMEN
Filoviruses, consisting of Ebola virus, Marburg virus and Cuevavirus, cause severe hemorrhagic fevers in humans with high mortality rates up to 90%. Currently, there is no approved vaccine or therapy available for the prevention and treatment of filovirus infection in humans. The recent 2013-2015 West African Ebola epidemic underscores the urgency to develop antiviral therapeutics against these infectious diseases. Our previous study showed that GPCR antagonists, particularly histamine receptor antagonists (antihistamines) inhibit Ebola and Marburg virus entry. In this study, we screened a library of 1220 small molecules with predicted antihistamine activity, identified multiple compounds with potent inhibitory activity against entry of both Ebola and Marburg viruses in human cancer cell lines, and confirmed their anti-Ebola activity in human primary cells. These small molecules target a late-stage of Ebola virus entry. Further structure-activity relationship studies around one compound (cp19) reveal the importance of the coumarin fused ring structure, especially the hydrophobic substituents at positions 3 and/or 4, for its antiviral activity, and this identified scaffold represents a favorable starting point for the rapid development of anti-filovirus therapeutic agents.
Asunto(s)
Antivirales/farmacología , Cumarinas/química , Cumarinas/farmacología , Ebolavirus/efectos de los fármacos , Antagonistas de los Receptores Histamínicos/farmacología , Marburgvirus/efectos de los fármacos , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/química , Línea Celular , Línea Celular Tumoral , Cumarinas/análisis , Descubrimiento de Drogas , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Ensayos Analíticos de Alto Rendimiento , Antagonistas de los Receptores Histamínicos/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Enfermedad del Virus de Marburg/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas , Relación Estructura-ActividadRESUMEN
High-content image-based screening was developed as an approach to test a small-molecule library of compounds targeting signal transduction pathways for antiviral activity against multiple highly pathogenic RNA viruses. Of the 2843 compounds screened, 120 compounds exhibited ≥60% antiviral activity. Four compounds (E225-0969, E528-0039, G118-0778, and G544-0735), which were most active against Rift Valley fever virus (RVFV) and showed broad-spectrum antiviral activity, were selected for further evaluation for their concentration-response profile and cytotoxicity. These compounds did not show any visible cytotoxicity at the highest concentration of compound tested (200 µM). All four of these compounds were more active than ribavirin against several viruses. One compound, E225-0969, had the lowest effective concentration (EC50 = 1.9-8.92 µM) for all the viruses tested. This compound was 13- and 43-fold more inhibitory against RVFV and Chikungunya virus (CHIKV), respectively, than ribavirin. The highest selectivity index (>106.2) was for E225-0969 against CHIKV. Time-of-addition assays suggested that all four lead compounds targeted early steps in the viral life cycle (entry and/or replication) but not virus egress. Overall, this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals against highly pathogenic viruses.
Asunto(s)
Antivirales/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Pruebas de Sensibilidad Microbiana/métodos , Virus ARN/efectos de los fármacos , Virus ARN/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Antivirales/química , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/normas , Ensayos Analíticos de Alto Rendimiento/normas , Humanos , Pruebas de Sensibilidad Microbiana/normas , Microscopía Fluorescente , Reproducibilidad de los Resultados , Bibliotecas de Moléculas Pequeñas , Internalización del Virus/efectos de los fármacos , Replicación Viral/efectos de los fármacosRESUMEN
The rhesus macaque serves as an animal model for Ebola virus (EBOV) infection. A thorough understanding of EBOV infection in this species would aid in further development of filovirus therapeutics and vaccines. In this study, pathological and immunological data from EBOV-infected rhesus macaques are presented. Changes in blood chemistries, hematology, coagulation, and immune parameters during infection, which were consistently observed in the animals, are presented. In an animal that survived challenge, a delay was observed in the detection of viral RNA and inflammatory cytokines and chemokines which may have contributed to survival. Collectively, these data add to the body of knowledge regarding EBOV pathogenesis in rhesus macaques and emphasize the reproducibility of the rhesus macaque challenge model.
Asunto(s)
Ebolavirus/crecimiento & desarrollo , Fiebre Hemorrágica Ebola/patología , Fiebre Hemorrágica Ebola/virología , Enfermedades de los Primates/patología , Enfermedades de los Primates/virología , Animales , Modelos Animales de Enfermedad , Femenino , Macaca mulatta , MasculinoRESUMEN
A longstanding and still-increasing threat to the effective treatment of infectious diseases is resistance to antimicrobial countermeasures. Potentially, the targeting of host proteins and pathways essential for the detrimental effects of pathogens offers an approach that may discover broad-spectrum anti-pathogen countermeasures and circumvent the effects of pathogen mutations leading to resistance. Here we report implementation of a strategy for discovering broad-spectrum host-oriented therapies against multiple pathogenic agents by multiplex screening of drugs for protection against the detrimental effects of multiple pathogens, identification of host cell pathways inhibited by the drug, and screening for effects of the agent on other pathogens exploiting the same pathway. We show that a clinically used antimalarial drug, Amodiaquine, discovered by this strategy, protects host cells against infection by multiple toxins and viruses by inhibiting host cathepsin B. Our results reveal the practicality of discovering broadly acting anti-pathogen countermeasures that target host proteins exploited by pathogens.
Asunto(s)
Antígenos Bacterianos/farmacología , Toxinas Bacterianas/farmacología , Interacciones Huésped-Patógeno/efectos de los fármacos , Virus/efectos de los fármacos , Amodiaquina/química , Amodiaquina/farmacología , Animales , Catepsina B/metabolismo , Muerte Celular/efectos de los fármacos , Citosol/efectos de los fármacos , Citosol/metabolismo , Aprobación de Drogas , Ebolavirus/efectos de los fármacos , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Células HeLa , Humanos , Metaboloma/efectos de los fármacos , Ratones , Modelos Biológicos , Células RAW 264.7 , Estados Unidos , United States Food and Drug AdministrationRESUMEN
High content image-based screening was developed as an approach to test a protease inhibitor small molecule library for antiviral activity against Rift Valley fever virus (RVFV) and to determine their mechanism of action. RVFV is the causative agent of severe disease of humans and animals throughout Africa and the Arabian Peninsula. Of the 849 compounds screened, 34 compounds exhibited ≥ 50% inhibition against RVFV. All of the hit compounds could be classified into 4 distinct groups based on their unique chemical backbone. Some of the compounds also showed broad antiviral activity against several highly pathogenic RNA viruses including Ebola, Marburg, Venezuela equine encephalitis, and Lassa viruses. Four hit compounds (C795-0925, D011-2120, F694-1532 and G202-0362), which were most active against RVFV and showed broad-spectrum antiviral activity, were selected for further evaluation for their cytotoxicity, dose response profile, and mode of action using classical virological methods and high-content imaging analysis. Time-of-addition assays in RVFV infections suggested that D011-2120 and G202-0362 targeted virus egress, while C795-0925 and F694-1532 inhibited virus replication. We showed that D011-2120 exhibited its antiviral effects by blocking microtubule polymerization, thereby disrupting the Golgi complex and inhibiting viral trafficking to the plasma membrane during virus egress. While G202-0362 also affected virus egress, it appears to do so by a different mechanism, namely by blocking virus budding from the trans Golgi. F694-1532 inhibited viral replication, but also appeared to inhibit overall cellular gene expression. However, G202-0362 and C795-0925 did not alter any of the morphological features that we examined and thus may prove to be good candidates for antiviral drug development. Overall this work demonstrates that high-content image analysis can be used to screen chemical libraries for new antivirals and to determine their mechanism of action and any possible deleterious effects on host cellular biology.
Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Inhibidores de Proteasas/farmacología , Virus de la Fiebre del Valle del Rift/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas , Virología/métodos , Animales , Chlorocebus aethiops , Ebolavirus , Células HeLa , Humanos , Fiebre del Valle del Rift , Células VeroRESUMEN
Development of novel strategies targeting the highly virulent ebolaviruses is urgently required. A proteomic study identified the ER chaperone HSPA5 as an ebolavirus-associated host protein. Here, we show using the HSPA5 inhibitor (-)- epigallocatechin gallate (EGCG) that the chaperone is essential for virus infection, thereby demonstrating a functional significance for the association. Furthermore, in vitro and in vivo gene targeting impaired viral replication and protected animals in a lethal infection model. These findings demonstrate that HSPA5 is vital for replication and can serve as a viable target for the design of host-based countermeasures.