Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Cell ; 184(2): 299-301, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33482096

RESUMEN

Ion channels can tailor their activity to the particular cellular context by incorporating auxiliary subunits that are channel-type specific. In this issue of Cell, Ávalos Prado et al. now find that a well-characterized voltage-gated K+ channel auxiliary subunit can also modulate the gating of Ca2+-activated Cl- channels.


Asunto(s)
Canales Iónicos , Humanos
2.
Cell ; 178(4): 776-778, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31398335

RESUMEN

Voltage sensing by ion channels is the key event enabling the generation and propagation of electrical activity in excitable cells. In this issue of Cell, Wisedchaisri et al. provide a structural view of a voltage-gated sodium channel in its resting closed conformation.


Asunto(s)
Canales Iónicos , Sodio , Conformación Molecular , Canales de Sodio Activados por Voltaje
3.
Cell ; 149(2): 425-38, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22464749

RESUMEN

Store operated calcium entry (SOCE) is a principal cellular process by which cells regulate basal calcium, refill intracellular Ca(2+) stores, and execute a wide range of specialized activities. STIM and Orai proteins have been identified as the essential components enabling the reconstitution of Ca(2+) release-activated Ca(2+) (CRAC) channels that mediate SOCE. Here, we report the molecular identification of SARAF as a negative regulator of SOCE. Using heterologous expression, RNAi-mediated silencing and site directed mutagenesis combined with electrophysiological, biochemical and imaging techniques we show that SARAF is an endoplasmic reticulum membrane resident protein that associates with STIM to facilitate slow Ca(2+)-dependent inactivation of SOCE. SARAF plays a key role in shaping cytosolic Ca(2+) signals and determining the content of the major intracellular Ca(2+) stores, a role that is likely to be important in protecting cells from Ca(2+) overfilling.


Asunto(s)
Calcio/metabolismo , Proteínas de la Membrana/metabolismo , Señalización del Calcio , Moléculas de Adhesión Celular/metabolismo , Línea Celular , Membrana Celular/metabolismo , Citosol/metabolismo , Citometría de Flujo , Humanos , Proteínas Sensoras del Calcio Intracelular , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1 , Molécula de Interacción Estromal 2
4.
Cell ; 143(5): 750-60, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21111235

RESUMEN

G protein-coupled receptors (GPCRs) respond to agonists to activate downstream enzymatic pathways or to gate ion channel function. Turning off GPCR signaling is known to involve phosphorylation of the GPCR by GPCR kinases (GRKs) to initiate their internalization. The process, however, is relatively slow and cannot account for the faster desensitization responses required to regulate channel gating. Here, we show that GRKs enable rapid desensitization of the G protein-coupled potassium channel (GIRK/Kir3.x) through a mechanism independent of their kinase activity. On GPCR activation, GRKs translocate to the membrane and quench channel activation by competitively binding and titrating G protein ßγ subunits away from the channel. Of interest, the ability of GRKs to effect this rapid desensitization depends on the receptor type. The findings thus reveal a stimulus-specific, phosphorylation-independent mechanism for rapidly downregulating GPCR activity at the effector level.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Quinasas de Receptores Acoplados a Proteína-G/metabolismo , Animales , Fenómenos Fisiológicos Celulares , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Fosforilación
5.
Proc Natl Acad Sci U S A ; 116(37): 18700-18709, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31444298

RESUMEN

Voltage-dependent potassium channels (Kvs) gate in response to changes in electrical membrane potential by coupling a voltage-sensing module with a K+-selective pore. Animal toxins targeting Kvs are classified as pore blockers, which physically plug the ion conduction pathway, or as gating modifiers, which disrupt voltage sensor movements. A third group of toxins blocks K+ conduction by an unknown mechanism via binding to the channel turrets. Here, we show that Conkunitzin-S1 (Cs1), a peptide toxin isolated from cone snail venom, binds at the turrets of Kv1.2 and targets a network of hydrogen bonds that govern water access to the peripheral cavities that surround the central pore. The resulting ectopic water flow triggers an asymmetric collapse of the pore by a process resembling that of inherent slow inactivation. Pore modulation by animal toxins exposes the peripheral cavity of K+ channels as a novel pharmacological target and provides a rational framework for drug design.


Asunto(s)
Membrana Celular/efectos de los fármacos , Proteínas de Drosophila/antagonistas & inhibidores , Activación del Canal Iónico/efectos de los fármacos , Canal de Potasio Kv.1.2/antagonistas & inhibidores , Venenos de Moluscos/toxicidad , Canales de Potasio de la Superfamilia Shaker/antagonistas & inhibidores , Animales , Membrana Celular/metabolismo , Cristalografía por Rayos X , Proteínas de Drosophila/genética , Proteínas de Drosophila/aislamiento & purificación , Proteínas de Drosophila/metabolismo , Diseño de Fármacos , Femenino , Enlace de Hidrógeno/efectos de los fármacos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/aislamiento & purificación , Canal de Potasio Kv.1.2/metabolismo , Dosificación Letal Mediana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Venenos de Moluscos/química , Mutación , Oocitos , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Canales de Potasio de la Superfamilia Shaker/genética , Canales de Potasio de la Superfamilia Shaker/aislamiento & purificación , Canales de Potasio de la Superfamilia Shaker/metabolismo , Agua/química , Agua/metabolismo , Xenopus laevis
6.
J Physiol ; 599(2): 521-545, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33124684

RESUMEN

KEY POINTS: G-protein inwardly rectifying K+ (GIRK) channels consist of four homologous subunits (GIRK1-4) and are essential regulators of electrical excitability in the nervous system. GIRK2-null mice have been widely investigated for their distinct behaviour and altered depotentiation following long-term potentiation (LTP), whereas GIRK1 mice are less well characterized. Here we utilize a novel knockin mouse strain in which the GIRK1 subunit is fluorescently tagged with yellow fluorescent protein (YFP-GIRK1) and the GIRK1-null mouse line to investigate the role of GIRK1 in neuronal processes such as spatial learning and memory, locomotion and depotentiation following LTP. Neurons dissected from YFP-GIRK1 mice had significantly reduced potassium currents and this mouse line phenotypically resembled GIRK1-null mice, making it a 'functional knockdown' model of GIRK1-containing channels. YFP-GIRK1 and GIRK1-null mice had increased locomotion, reduced spatial learning and memory and blunted depotentiation following LTP. ABSTRACT: GIRK channels are essential for the slow inhibition of electrical activity in the nervous system and heart rate regulation via the parasympathetic system. The implications of individual GIRK isoforms in specific physiological activities are based primarily on studies conducted with GIRK-null mouse lines. Here we utilize a novel knockin mouse line in which YFP was fused in-frame to the N-terminus of GIRK1 (YFP-GIRK1) to correlate GIRK1 spatial distribution with physiological activities. These mice, however, displayed spontaneous seizure-like activity and thus were investigated for the origin of such activity. We show that GIRK tetramers containing YFP-GIRK1 are correctly assembled and trafficked to the plasma membrane, but are functionally impaired. A battery of behavioural assays conducted on YFP-GIRK1 and GIRK1-null (GIRK1-/- ) mice revealed similar phenotypes, including impaired nociception, reduced anxiety and hyperactivity in an unfamiliar environment. However, YFP-GIRK1 mice exhibited increased home-cage locomotion while GIRK1-/- mice did not. In addition, we show that the GIRK1 subunit is essential for intact spatial learning and memory and synaptic plasticity in hippocampal brain slices. This study expands our knowledge regarding the role of GIRK1 in neuronal processes and underlines the importance of GIRK1-containing heterotetramers.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G , Aprendizaje Espacial , Animales , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal , Neuronas/metabolismo
7.
Chembiochem ; 22(5): 894-903, 2021 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-33105515

RESUMEN

Quinone methide (QM) chemistry is widely applied including in enzyme inhibitors. Typically, enzyme-mediated bond breaking releases a phenol product that rearranges into an electrophilic QM that in turn covalently modifies protein side chains. However, the factors that govern the reactivity of QM-based inhibitors and their mode of inhibition have not been systematically explored. Foremost, enzyme inactivation might occur in cis, whereby a QM molecule inactivates the very same enzyme molecule that released it, or by trans if the released QMs diffuse away and inactivate other enzyme molecules. We examined QM-based inhibitors for enzymes exhibiting phosphoester hydrolase activity. We tested different phenolic substituents and benzylic leaving groups, thereby modulating the rates of enzymatic hydrolysis, phenolate-to-QM rearrangement, and the electrophilicity of the resulting QM. By developing assays that distinguish between cis and trans inhibition, we have identified certain combinations of leaving groups and phenyl substituents that lead to inhibition in the cis mode, while other combinations gave trans inhibition. Our results suggest that cis-acting QM-based substrates could be used as activity-based probes to identify various phospho- and phosphono-ester hydrolases, and potentially other hydrolases.


Asunto(s)
Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolquinonas/química , Indolquinonas/farmacología , Monoéster Fosfórico Hidrolasas/antagonistas & inhibidores , Hidrólisis , Organofosfatos/metabolismo
8.
Chemphyschem ; 20(14): 1860-1868, 2019 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-31054266

RESUMEN

It is an open question whether the conformations of proteins sampled in dilute solutions are the same as in the cellular environment. Here we address this question by double electron-electron resonance (DEER) distance measurements with Gd(III) spin labels to probe the conformations of calmodulin (CaM) in vitro, in cell extract, and in human HeLa cells. Using the CaM mutants N53C/T110C and T34C/T117C labeled with maleimide-DOTA-Gd(III) in the N- and C-terminal domains, we observed broad and varied interdomain distance distributions. The in vitro distance distributions of apo-CaM and holo-CaM in the presence and absence of the IQ target peptide can be described by combinations of closed, open, and collapsed conformations. In cell extract, apo- and holo-CaM bind to target proteins in a similar way as apo- and holo-CaM bind to IQ peptide in vitro. In HeLa cells, however, in the presence or absence of elevated in-cell Ca2+ levels CaM unexpectedly produced more open conformations and very broad distance distributions indicative of many different interactions with in-cell components. These results show-case the importance of in-cell analyses of protein structures.


Asunto(s)
Calmodulina/química , Calmodulina/metabolismo , Calmodulina/genética , Extractos Celulares/química , Espectroscopía de Resonancia por Spin del Electrón/métodos , Gadolinio/química , Células HeLa , Humanos , Mutación , Conformación Proteica , Marcadores de Spin
9.
Proc Natl Acad Sci U S A ; 109(7): 2642-7, 2012 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-22308328

RESUMEN

G protein-activated inwardly rectifying K+ channels (GIRK) generate slow inhibitory postsynaptic potentials in the brain via G(i/o) protein-coupled receptors. GIRK2, a GIRK subunit, is widely abundant in the brain and has been implicated in various functions and pathologies, such as learning and memory, reward, motor coordination, and Down syndrome. Down syndrome, the most prevalent cause of mental retardation, results from the presence of an extra maternal chromosome 21 (trisomy 21), which comprises the Kcnj6 gene (GIRK2). The present study examined the behaviors and cellular physiology properties in mice harboring a single trisomy of the Kcnj6 gene. Kcnj6 triploid mice exhibit deficits in hippocampal-dependent learning and memory, altered responses to rewards, hampered depotentiation, a form of excitatory synaptic plasticity, and have accentuated long-term synaptic depression. Collectively the findings suggest that triplication of Kcnj6 gene may play an active role in some of the abnormal neurological phenotypes found in Down syndrome.


Asunto(s)
Cognición , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Plasticidad Neuronal , Recompensa , Trisomía , Animales , Ritmo Circadiano , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/genética , Hipocampo/fisiología , Ratones
11.
Protein Sci ; 33(6): e4995, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38747377

RESUMEN

Membrane proteins play critical physiological roles as receptors, channels, pumps, and transporters. Despite their importance, however, low expression levels often hamper the experimental characterization of membrane proteins. We present an automated and web-accessible design algorithm called mPROSS (https://mPROSS.weizmann.ac.il), which uses phylogenetic analysis and an atomistic potential, including an empirical lipophilicity scale, to improve native-state energy. As a stringent test, we apply mPROSS to the Kv1.2-Kv2.1 paddle chimera voltage-gated potassium channel. Four designs, encoding 9-26 mutations relative to the parental channel, were functional and maintained potassium-selective permeation and voltage dependence in Xenopus oocytes with up to 14-fold increase in whole-cell current densities. Additionally, single-channel recordings reveal no significant change in the channel-opening probability nor in unitary conductance, indicating that functional expression levels increase without impacting the activity profile of individual channels. Our results suggest that the expression levels of other dynamic channels and receptors may be enhanced through one-shot design calculations.


Asunto(s)
Xenopus laevis , Animales , Algoritmos , Canal de Potasio Kv.1.2/genética , Canal de Potasio Kv.1.2/metabolismo , Canal de Potasio Kv.1.2/química , Oocitos/metabolismo , Filogenia , Canales de Potasio Shab/metabolismo , Canales de Potasio Shab/genética , Canales de Potasio Shab/química , Mutación , Xenopus
12.
PNAS Nexus ; 2(3): pgad068, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37007714

RESUMEN

Store-operated calcium entry (SOCE) is a vital process aimed at refilling cellular internal Ca2+ stores and a primary cellular signaling driver for transcription factors' entry to the nucleus. SOCE-associated regulatory factor (SARAF)/TMEM66 is an endoplasmic reticulum (ER)-resident transmembrane protein that promotes SOCE inactivation and prevents Ca2+ overfilling of the cell. Here, we demonstrate that mice deficient in SARAF develop age-dependent sarcopenic obesity with decreased energy expenditure, lean mass, and locomotion without affecting food consumption. Moreover, SARAF ablation reduces hippocampal proliferation, modulates the activity of the hypothalamus-pituitary-adrenal (HPA) axis, and mediates changes in anxiety-related behaviors. Interestingly, selective SARAF ablation in the hypothalamus's paraventricular nucleus (PVN) neurons reduces old age-induced obesity and preserves locomotor activity, lean mass, and energy expenditure, suggesting a possible central control with a site-specific role for SARAF. At the cellular level, SARAF ablation in hepatocytes leads to elevated SOCE, elevated vasopressin-induced Ca2+ oscillations, and an increased mitochondrial spare respiratory capacity (SPC), thus providing insights into the cellular mechanisms that may affect the global phenotypes. These effects may be mediated via the liver X receptor (LXR) and IL-1 signaling metabolic regulators explicitly altered in SARAF ablated cells. In short, our work supports both central and peripheral roles of SARAF in regulating metabolic, behavioral, and cellular responses.

13.
Gigascience ; 112022 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-35640874

RESUMEN

Venoms have evolved >100 times in all major animal groups, and their components, known as toxins, have been fine-tuned over millions of years into highly effective biochemical weapons. There are many outstanding questions on the evolution of toxin arsenals, such as how venom genes originate, how venom contributes to the fitness of venomous species, and which modifications at the genomic, transcriptomic, and protein level drive their evolution. These questions have received particularly little attention outside of snakes, cone snails, spiders, and scorpions. Venom compounds have further become a source of inspiration for translational research using their diverse bioactivities for various applications. We highlight here recent advances and new strategies in modern venomics and discuss how recent technological innovations and multi-omic methods dramatically improve research on venomous animals. The study of genomes and their modifications through CRISPR and knockdown technologies will increase our understanding of how toxins evolve and which functions they have in the different ontogenetic stages during the development of venomous animals. Mass spectrometry imaging combined with spatial transcriptomics, in situ hybridization techniques, and modern computer tomography gives us further insights into the spatial distribution of toxins in the venom system and the function of the venom apparatus. All these evolutionary and biological insights contribute to more efficiently identify venom compounds, which can then be synthesized or produced in adapted expression systems to test their bioactivity. Finally, we critically discuss recent agrochemical, pharmaceutical, therapeutic, and diagnostic (so-called translational) aspects of venoms from which humans benefit.


Asunto(s)
Proteómica , Ponzoñas , Animales , Investigación , Serpientes/genética , Transcriptoma , Ponzoñas/química , Ponzoñas/genética
14.
Neuron ; 55(4): 537-8, 2007 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-17698006

RESUMEN

The function of inwardly rectifying K+ (Kir) channels is highly diverse and therefore is tightly regulated by various environmental factors. In their article in this issue of Neuron, Rapedius et al. recognize a conserved structural mechanism for Kir channels gating by both pH and PIP2. In light of these findings and accumulated knowledge, PIP2 is suggested to have a common coregulatory role in the gating of Kir channels by all their soluble modulators.


Asunto(s)
Activación del Canal Iónico/fisiología , Fosfatidilinositol 4,5-Difosfato/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales
15.
Methods Enzymol ; 654: 169-201, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34120712

RESUMEN

Animal venom is a rich source for peptide toxins that bind and modulate the function of ion channels. Owing to their ability to bind receptor sites on the channel protein with high affinity and specificity, peptide neurotoxins have become an indispensable tool for ion channel research. Recent breakthroughs in structural biology and advances in computer simulations of biomolecules have sparked a new interest in animal toxins as probes of channel protein structure and function. Here, we focus on methods used to produce animal toxins for research purposes using recombinant expression. The specific challenges associated with heterologous production of venom peptides are discussed, and several methods targeting these issues are presented with an emphasis on E. coli based systems. An efficient protocol for the bacterial expression, folding, and purification of recombinant venom peptides is described.


Asunto(s)
Escherichia coli , Ponzoñas , Animales , Escherichia coli/genética , Escherichia coli/metabolismo , Canales Iónicos/genética , Péptidos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
16.
J Gen Physiol ; 153(6)2021 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-34014250

RESUMEN

It has been reported earlier that the slow (C-type) inactivated conformation in Kv channels is stabilized by a multipoint hydrogen-bond network behind the selectivity filter. Furthermore, MD simulations revealed that structural water molecules are also involved in the formation of this network locking the selectivity filter in its inactive conformation. We found that the application of an extracellular, but not intracellular, solution based on heavy water (D2O) dramatically slowed entry into the slow inactivated state in Shaker-IR mutants (T449A, T449A/I470A, and T449K/I470C, displaying a wide range of inactivation kinetics), consistent with the proposed effect of the dynamics of structural water molecules on the conformational stability of the selectivity filter. Alternative hypotheses capable of explaining the observed effects of D2O were examined. Increased viscosity of the external solution mimicked by the addition of glycerol had a negligible effect on the rate of inactivation. In addition, the inactivation time constants of K+ currents in the outward and the inward directions in asymmetric solutions were not affected by a H2O/D2O exchange, negating an indirect effect of D2O on the rate of K+ rehydration. The elimination of the nonspecific effects of D2O on our macroscopic current measurements supports the hypothesis that the rate of structural water exchange at the region behind the selectivity filter determines the rate of slow inactivation, as proposed by molecular modeling.


Asunto(s)
Activación del Canal Iónico , Agua , Óxido de Deuterio , Enlace de Hidrógeno , Cinética
17.
J Mol Biol ; 433(17): 166957, 2021 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-33771569

RESUMEN

Many venomous organisms carry in their arsenal short polypeptides that block K+ channels in a highly selective manner. These toxins may compete with the permeating ions directly via a "plug" mechanism or indirectly via a "pore-collapse" mechanism. An alternative "lid" mechanism was proposed but remained poorly defined. Here we study the Drosophila Shaker channel block by Conkunitzin-S1 and Conkunitzin-C3, two highly similar toxins derived from cone venom. Despite their similarity, the two peptides exhibited differences in their binding poses and biophysical assays, implying discrete action modes. We show that while Conkunitzin-S1 binds tightly to the channel turret and acts via a "pore-collapse" mechanism, Conkunitzin-C3 does not contact this region. Instead, Conk-C3 uses a non-conserved Arg to divert the permeant ions and trap them in off-axis cryptic sites above the SF, a mechanism we term a "molecular-lid". Our study provides an atomic description of the "lid" K+ blocking mode and offers valuable insights for the design of therapeutics based on venom peptides.


Asunto(s)
Activación del Canal Iónico/efectos de los fármacos , Péptidos/farmacología , Canales de Potasio/metabolismo , Potasio/metabolismo , Venenos de Escorpión/farmacología , Secuencia de Aminoácidos , Animales , Sitios de Unión/efectos de los fármacos , Biofisica/métodos , Xenopus laevis/metabolismo
18.
Neuron ; 51(5): 561-73, 2006 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-16950155

RESUMEN

G protein-coupled signaling is one of the major mechanisms for controlling cellular excitability. One of the main targets for this control at postsynaptic membranes is the G protein-coupled potassium channels (GIRK/Kir3), which generate slow inhibitory postsynaptic potentials following the activation of Pertussis toxin-sensitive G protein-coupled receptors. Using total internal reflection fluorescence (TIRF) microscopy combined with fluorescence resonance energy transfer (FRET), in intact cells, we provide evidence for the existence of a trimeric G protein-channel complex at rest. We show that activation of the channel via the receptor induces a local conformational switch of the G protein to induce channel opening. The presence of such a complex thus provides the means for a precise temporal and highly selective activation of the channel, which is required for fine tuning of neuronal excitability.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/fisiología , Proteínas de Unión al GTP/fisiología , Neuronas/fisiología , Estructura Cuaternaria de Proteína/fisiología , Transducción de Señal/fisiología , Línea Celular , Transferencia Resonante de Energía de Fluorescencia , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Proteínas de Unión al GTP/química , Humanos , Potenciales de la Membrana/fisiología , Microscopía Fluorescente , Técnicas de Placa-Clamp
19.
Neuron ; 50(4): 561-73, 2006 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-16701207

RESUMEN

G protein-activated inwardly rectifying potassium (GIRK) channels mediate slow synaptic inhibition and control neuronal excitability. It is unknown whether GIRK channels are subject to regulation by guanine dissociation inhibitor (GDI) proteins like LGN, a mammalian homolog of Drosophila Partner of Inscuteable (mPINS). Here we report that LGN increases basal GIRK current but reduces GIRK activation by metabotropic transmitter receptors coupled to Gi or Go, but not Gs. Moreover, expression of its N-terminal, TPR-containing protein interaction domains mimics the effects of LGN in mammalian cells, probably by releasing sequestered endogenous LGN. In hippocampal neurons, expression of LGN, or LGN fragments that mimic or enhance LGN activity, hyperpolarizes the resting potential due to increased basal GIRK activity and reduces excitability. Using Lenti virus for LGN RNAi to reduce endogenous LGN levels in hippocampal neurons, we further show an essential role of LGN for maintaining basal GIRK channel activity and for harnessing neuronal excitability.


Asunto(s)
Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neuronas/metabolismo , Transducción de Señal/fisiología , Animales , Encéfalo/metabolismo , Células Cultivadas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/química , Inmunoprecipitación , Potenciales de la Membrana/fisiología , Oocitos/metabolismo , Técnicas de Placa-Clamp , Ratas , Xenopus
20.
Neuron ; 47(6): 833-43, 2005 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16157278

RESUMEN

Ion channels lower the energetic barrier for ion passage across cell membranes and enable the generation of bioelectricity. Electrostatic interactions between permeant ions and channel pore helix dipoles have been proposed as a general mechanism for facilitating ion passage. Here, using genetic selections to probe interactions of an exemplar potassium channel blocker, barium, with the inward rectifier Kir2.1, we identify mutants bearing positively charged residues in the potassium channel signature sequence at the pore helix C terminus. We show that these channels are functional, selective, resistant to barium block, and have minimally altered conductance properties. Both the experimental data and model calculations indicate that barium resistance originates from electrostatics. We demonstrate that potassium channel function is remarkably unperturbed when positive charges occur near the permeant ions at a location that should counteract pore helix electrostatic effects. Thus, contrary to accepted models, the pore helix dipole seems to be a minor factor in potassium channel permeation.


Asunto(s)
Secuencias Hélice-Asa-Hélice/fisiología , Activación del Canal Iónico/fisiología , Animales , Bario/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Permeabilidad de la Membrana Celular/genética , Relación Dosis-Respuesta a Droga , Relación Dosis-Respuesta en la Radiación , Conductividad Eléctrica , Estimulación Eléctrica/métodos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/fisiología , Activación del Canal Iónico/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Modelos Moleculares , Mutagénesis/fisiología , Oocitos , Técnicas de Placa-Clamp/métodos , Canales de Potasio de Rectificación Interna/fisiología , Proteínas Recombinantes de Fusión/fisiología , Homología de Secuencia de Aminoácido , Electricidad Estática , Relación Estructura-Actividad , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA