Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Biol Chem ; 299(11): 105342, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37832872

RESUMEN

The diaphanous-related formin, Diaphanous 1 (DIAPH1), is required for the assembly of Filamentous (F)-actin structures. DIAPH1 is an intracellular effector of the receptor for advanced glycation end products (RAGE) and contributes to RAGE signaling and effects such as increased cell migration upon RAGE stimulation. Mutations in DIAPH1, including those in the basic "RRKR" motif of its autoregulatory domain, diaphanous autoinhibitory domain (DAD), are implicated in hearing loss, macrothrombocytopenia, and cardiovascular diseases. The solution structure of the complex between the N-terminal inhibitory domain, DID, and the C-terminal DAD, resolved by NMR spectroscopy shows only transient interactions between DID and the basic motif of DAD, resembling those found in encounter complexes. Cross-linking studies placed the RRKR motif into the negatively charged cavity of DID. Neutralizing the cavity resulted in a 5-fold decrease in the binding affinity and 4-fold decrease in the association rate constant of DAD for DID, indicating that the RRKR interactions with DID form a productive encounter complex. A DIAPH1 mutant containing a neutralized RRKR binding cavity shows excessive colocalization with actin and is unresponsive to RAGE stimulation. This is the first demonstration of a specific alteration of the surfaces responsible for productive encounter complexation with implications for human pathology.


Asunto(s)
Citoesqueleto de Actina , Actinas , Forminas , Humanos , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Forminas/metabolismo , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal
2.
Biochemistry ; 56(32): 4117-4126, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28715177

RESUMEN

Ribosomes are present inside bacterial cells at micromolar concentrations and occupy up to 20% of the cell volume. Under these conditions, even weak quinary interactions between ribosomes and cytosolic proteins can affect protein activity. By using in-cell and in vitro NMR spectroscopy, and biophysical techniques, we show that the enzymes, adenylate kinase and dihydrofolate reductase, and the respective coenzymes, ATP and NADPH, bind to ribosomes with micromolar affinity, and that this interaction suppresses the enzymatic activities of both enzymes. Conversely, thymidylate synthase, which works together with dihydrofolate reductase in the thymidylate synthetic pathway, is activated by ribosomes. We also show that ribosomes impede diffusion of green fluorescent protein in vitro and contribute to the decrease in diffusion in vivo. These results strongly suggest that ribosome-mediated quinary interactions contribute to the differences between in vitro and in vivo protein activities and that ribosomes play a previously under-appreciated nontranslational role in regulating cellular biochemistry.


Asunto(s)
Adenilato Quinasa/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Resonancia Magnética Nuclear Biomolecular/métodos , Ribosomas/metabolismo , Tetrahidrofolato Deshidrogenasa/metabolismo , Adenosina Trifosfato/genética , Adenosina Trifosfato/metabolismo , Adenilato Quinasa/genética , Coenzimas/genética , Coenzimas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , NADP/genética , NADP/metabolismo , Ribosomas/genética , Tetrahidrofolato Deshidrogenasa/genética
3.
Biochemistry ; 55(32): 4568-73, 2016 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-27456029

RESUMEN

RNA constitutes up to 20% of a cell's dry weight, corresponding to ∼20 mg/mL. This high concentration of RNA facilitates low-affinity protein-RNA quinary interactions, which may play an important role in facilitating and regulating biological processes. In the yeast Pichia pastoris, the level of ubiquitin-RNA colocalization increases when cells are grown in the presence of dextrose and methanol instead of methanol as the sole carbon source. Total RNA isolated from cells grown in methanol increases ß-galactosidase activity relative to that seen with RNA isolated from cells grown in the presence of dextrose and methanol. Because the total cellular RNA content changes with growth medium, protein-RNA quinary interactions can alter in-cell protein biochemistry and may play an important role in cell adaptation, critical to many physiological and pathological states.


Asunto(s)
Pichia/citología , ARN de Hongos/metabolismo , beta-Galactosidasa/metabolismo , Pichia/enzimología , Pichia/metabolismo
4.
Biochemistry ; 54(17): 2727-38, 2015 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-25894651

RESUMEN

Historically introduced by McConkey to explain the slow mutation rate of highly abundant proteins, weak protein (quinary) interactions are an emergent property of living cells. The protein complexes that result from quinary interactions are transient and thus difficult to study biochemically in vitro. Cross-correlated relaxation-induced polarization transfer-based in-cell nuclear magnetic resonance allows the characterization of protein quinary interactions with atomic resolution inside live prokaryotic and eukaryotic cells. We show that RNAs are an important component of protein quinary interactions. Protein quinary interactions are unique to the target protein and may affect physicochemical properties, protein activity, and interactions with drugs.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Proteínas/química , Secuencia de Bases , Sondas de ADN , Electroporación , Humanos , Modelos Moleculares , Proteínas/genética , ARN/química , Transfección
5.
J Biol Chem ; 287(7): 5133-44, 2012 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-22194616

RESUMEN

The receptor for advanced glycation end products (RAGE) is a multiligand cell surface macromolecule that plays a central role in the etiology of diabetes complications, inflammation, and neurodegeneration. The cytoplasmic domain of RAGE (C-terminal RAGE; ctRAGE) is critical for RAGE-dependent signal transduction. As the most membrane-proximal event, mDia1 binds to ctRAGE, and it is essential for RAGE ligand-stimulated phosphorylation of AKT and cell proliferation/migration. We show that ctRAGE contains an unusual α-turn that mediates the mDia1-ctRAGE interaction and is required for RAGE-dependent signaling. The results establish a novel mechanism through which an extracellular signal initiated by RAGE ligands regulates RAGE signaling in a manner requiring mDia1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptores Inmunológicos/metabolismo , Transducción de Señal/fisiología , Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/genética , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Forminas , Humanos , Inflamación/genética , Inflamación/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Fosforilación/fisiología , Unión Proteica , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Proto-Oncogénicas c-akt/química , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/química , Receptores Inmunológicos/genética
6.
J Am Chem Soc ; 134(30): 12798-806, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22758659

RESUMEN

In-cell NMR in the yeast Pichia pastoris was used to study the influence of metabolic changes on protein structure and dynamics at atomic resolution. Induction of ubiquitin overexpression from the methanol induced AOX1 promoter results in the protein being localized in the cytosol and yields a well-resolved in-cell NMR spectrum. When P. pastoris is grown on a mixed carbon source containing both dextrose and methanol, ubiquitin is found in small storage vesicles distributed in the cytosol, and the resulting in-cell NMR spectrum is broadened. The sequestration of overexpressed proteins into storage vesicles, which are inaccessible to small molecules, was demonstrated for two unrelated proteins and two different strains of P. pastoris , suggesting its general nature.


Asunto(s)
Pichia/citología , Proteínas de Saccharomyces cerevisiae/análisis , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Ubiquitina/análisis , Ubiquitina/genética , Oxidorreductasas de Alcohol/genética , Clonación Molecular , Glucosa/metabolismo , Resonancia Magnética Nuclear Biomolecular , Pichia/genética , Pichia/metabolismo , Regiones Promotoras Genéticas , Pliegue de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Regulación hacia Arriba , beta-Galactosidasa/análisis , beta-Galactosidasa/genética
7.
Sci Rep ; 12(1): 22293, 2022 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-36566335

RESUMEN

Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.


Asunto(s)
COVID-19 , Nanopartículas , Humanos , Células HEK293 , Lípidos/química , ARN Mensajero/genética , Vacunas contra la COVID-19 , Liposomas , Espectroscopía de Resonancia Magnética , Nanopartículas/química , Mitocondrias/genética , ARN Interferente Pequeño/genética
8.
Sci Transl Med ; 13(621): eabf7084, 2021 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-34818060

RESUMEN

The macro- and microvascular complications of type 1 and 2 diabetes lead to increased disease severity and mortality. The receptor for advanced glycation end products (RAGE) can bind AGEs and multiple proinflammatory ligands that accumulate in diabetic tissues. Preclinical studies indicate that RAGE antagonists have beneficial effects on numerous complications of diabetes. However, these antagonists target the extracellular domains of RAGE, which bind distinct RAGE ligands at diverse sites in the immunoglobulin-like variable domain and two constant domains. The cytoplasmic tail of RAGE (ctRAGE) binds to the formin, Diaphanous-1 (DIAPH1), and this interaction is important for RAGE signaling. To comprehensively capture the breadth of RAGE signaling, we developed small-molecule antagonists of ctRAGE-DIAPH1 interaction, termed RAGE229. We demonstrated that RAGE229 is effective in suppressing RAGE-DIAPH1 binding, Förster resonance energy transfer, and biological activities in cellular assays. Using solution nuclear magnetic resonance spectroscopy, we defined the molecular underpinnings of the interaction of RAGE229 with RAGE. Through in vivo experimentation, we showed that RAGE229 assuaged short- and long-term complications of diabetes in both male and female mice, without lowering blood glucose concentrations. Last, the treatment with RAGE229 reduced plasma concentrations of TNF-α, IL-6, and CCL2/JE-MCP1 in diabetic mice, in parallel with reduced pathological and functional indices of diabetes-like kidney disease. Targeting ctRAGE-DIAPH1 interaction with RAGE229 mitigated diabetic complications in rodents by attenuating inflammatory signaling.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Forminas/antagonistas & inhibidores , Animales , Complicaciones de la Diabetes/metabolismo , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Tipo 1/complicaciones , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Femenino , Masculino , Ratones , Receptor para Productos Finales de Glicación Avanzada/metabolismo
9.
Front Cardiovasc Med ; 7: 37, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32211423

RESUMEN

Obesity and diabetes are leading causes of cardiovascular morbidity and mortality. Although extensive strides have been made in the treatments for non-diabetic atherosclerosis and its complications, for patients with diabetes, these therapies provide less benefit for protection from cardiovascular disease (CVD). These considerations spur the concept that diabetes-specific, disease-modifying therapies are essential to identify, especially as the epidemics of obesity and diabetes continue to expand. Hence, as hyperglycemia is a defining feature of diabetes, it is logical to probe the impact of the specific consequences of hyperglycemia on the vessel wall, immune cell perturbation, and endothelial dysfunction-all harbingers to the development of CVD. In this context, high levels of blood glucose stimulate the formation of the irreversible advanced glycation end products, the products of non-enzymatic glycation and oxidation of proteins and lipids. AGEs accumulate in diabetic circulation and tissues and the interaction of AGEs with their chief cellular receptor, receptor for AGE or RAGE, contributes to vascular and immune cell perturbation. The cytoplasmic domain of RAGE lacks endogenous kinase activity; the discovery that this intracellular domain of RAGE binds to the formin, DIAPH1, and that DIAPH1 is essential for RAGE ligand-mediated signal transduction, identifies the specific cellular means by which RAGE functions and highlights a new target for therapeutic interruption of RAGE signaling. In human subjects, prominent signals for RAGE activity include the presence and levels of two forms of soluble RAGE, sRAGE, and endogenous secretory (es) RAGE. Further, genetic studies have revealed single nucleotide polymorphisms (SNPs) of the AGER gene (AGER is the gene encoding RAGE) and DIAPH1, which display associations with CVD. This Review presents current knowledge regarding the roles for RAGE and DIAPH1 in the causes and consequences of diabetes, from obesity to CVD. Studies both from human subjects and animal models are presented to highlight the breadth of evidence linking RAGE and DIAPH1 to the cardiovascular consequences of these metabolic disorders.

10.
ACS Chem Biol ; 13(3): 733-741, 2018 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-29359908

RESUMEN

In-cell NMR spectroscopy was used to screen for drugs that disrupt the interaction between prokaryotic ubiquitin like protein, Pup, and mycobacterial proteasome ATPase, Mpa. This interaction is critical for Mycobacterium tuberculosis resistance against nitric oxide (NO) stress; interruption of this process was proposed as a mechanism to control latent infection. Three compounds isolated from the NCI Diversity set III library rescued the physiological proteasome substrate from degradation suggesting that the proteasome degradation pathway was selectively targeted. Two of the compounds bind to Mpa with sub-micromolar to nanomolar affinity, and all three exhibit potency toward mycobacteria comparable to antibiotics currently available on the market, inhibiting growth in the low micromolar range.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Mycobacterium tuberculosis/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Mycobacterium tuberculosis/crecimiento & desarrollo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Ubiquitinas/metabolismo
11.
Sci Rep ; 6: 22450, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26936329

RESUMEN

The receptor for advanced glycation endproducts (RAGE) binds diverse ligands linked to chronic inflammation and disease. NMR spectroscopy and x-ray crystallization studies of the extracellular domains of RAGE indicate that RAGE ligands bind by distinct charge- and hydrophobicity-dependent mechanisms. The cytoplasmic tail (ct) of RAGE is essential for RAGE ligand-mediated signal transduction and consequent modulation of gene expression and cellular properties. RAGE signaling requires interaction of ctRAGE with the intracellular effector, mammalian diaphanous 1 or DIAPH1. We screened a library of 58,000 small molecules and identified 13 small molecule competitive inhibitors of ctRAGE interaction with DIAPH1. These compounds, which exhibit in vitro and in vivo inhibition of RAGE-dependent molecular processes, present attractive molecular scaffolds for the development of therapeutics against RAGE-mediated diseases, such as those linked to diabetic complications, Alzheimer's disease, and chronic inflammation, and provide support for the feasibility of inhibition of protein-protein interaction (PPI).


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Receptor para Productos Finales de Glicación Avanzada/antagonistas & inhibidores , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Transducción de Señal/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Humanos , Ratones
12.
Structure ; 24(9): 1509-22, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27524199

RESUMEN

The weak oligomerization exhibited by many transmembrane receptors has a profound effect on signal transduction. The phenomenon is difficult to characterize structurally due to the large sizes of and transient interactions between monomers. The receptor for advanced glycation end products (RAGE), a signaling molecule central to the induction and perpetuation of inflammatory responses, is a weak constitutive oligomer. The RAGE domain interaction surfaces that mediate homo-dimerization were identified by combining segmental isotopic labeling of extracellular soluble RAGE (sRAGE) and nuclear magnetic resonance spectroscopy with chemical cross-linking and mass spectrometry. Molecular modeling suggests that two sRAGE monomers orient head to head forming an asymmetric dimer with the C termini directed toward the cell membrane. Ligand-induced association of RAGE homo-dimers on the cell surface increases the molecular dimension of the receptor, recruiting Diaphanous 1 (DIAPH1) and activating signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Antígenos de Neoplasias/química , Proteínas Quinasas Activadas por Mitógenos/química , Simulación del Acoplamiento Molecular , Transducción de Señal , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Secuencia de Aminoácidos , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Forminas , Expresión Génica , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ligandos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Maleimidas/química , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Termodinámica
13.
Curr Top Med Chem ; 15(12): 1082-101, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25866267

RESUMEN

Peptide aptamers are small combinatorial proteins that are selected to bind to specific sites on their target molecules. Peptide aptamers consist of short, 5-20 amino acid residues long sequences, typically embedded as a loop within a stable protein scaffold. Various peptide aptamer scaffolds and in vitro and in vivo selection techniques are reviewed with emphasis on specific biomedical, bioimaging, and bioanalytical applications.


Asunto(s)
Aptámeros de Péptidos/química , Evolución Molecular Dirigida/métodos , Biblioteca de Péptidos , Técnica SELEX de Producción de Aptámeros/métodos , Anticuerpos/química , Aptámeros de Péptidos/farmacología , Proteínas del Dominio Armadillo/química , Perfilación de la Expresión Génica/métodos , Humanos , Modelos Moleculares , Imagen Molecular/métodos , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos
14.
Sci Rep ; 5: 9402, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25801767

RESUMEN

Intrinsically disordered proteins (IDPs) or unstructured segments within proteins play an important role in cellular physiology and pathology. Low cellular concentration, multiple binding partners, frequent post-translational modifications and the presence of multiple conformations make it difficult to characterize IDP interactions in intact cells. We used peptide aptamers selected by using the yeast-two-hybrid scheme and in-cell NMR to identify high affinity binders to transiently structured IDP and unstructured segments at atomic resolution. Since both the selection and characterization of peptide aptamers take place inside the cell, only physiologically relevant conformations of IDPs are targeted. The method is validated by using peptide aptamers selected against the prokaryotic ubiquitin-like protein, Pup, of the mycobacterium proteasome. The selected aptamers bind to distinct sites on Pup and have vastly different effects on rescuing mycobacterial proteasome substrate and on the survival of the Bacille-Calmette-Guèrin, BCG, strain of M. bovis. This technology can be applied to study the elusive action of IDPs under near physiological conditions.


Asunto(s)
Aptámeros de Péptidos/química , Proteínas Bacterianas/química , Proteínas Intrínsecamente Desordenadas/química , Complejo de la Endopetidasa Proteasomal/química , Procesamiento Proteico-Postraduccional , Ubiquitinas/química , Secuencia de Aminoácidos , Aptámeros de Péptidos/farmacología , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Intrínsecamente Desordenadas/metabolismo , Viabilidad Microbiana/efectos de los fármacos , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium bovis/química , Mycobacterium bovis/efectos de los fármacos , Mycobacterium bovis/metabolismo , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/efectos de los fármacos , Mycobacterium tuberculosis/metabolismo , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Pliegue de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Técnicas del Sistema de Dos Híbridos , Ubiquitinas/metabolismo
15.
PLoS One ; 8(9): e74576, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24040288

RESUMEN

The Mycobacterium tuberculosis proteasome is required for maximum virulence and to resist killing by the host immune system. The prokaryotic ubiquitin-like protein, Pup-GGE, targets proteins for proteasome-mediated degradation. We demonstrate that Pup-GGQ, a precursor of Pup-GGE, is not a substrate for proteasomal degradation. Using STINT-NMR, an in-cell NMR technique, we studied the interactions between Pup-GGQ, mycobacterial proteasomal ATPase, Mpa, and Mtb proteasome core particle (CP) inside a living cell at amino acid residue resolution. We showed that under in-cell conditions, in the absence of the proteasome CP, Pup-GGQ interacts with Mpa only weakly, primarily through its C-terminal region. When Mpa and non-stoichiometric amounts of proteasome CP are present, both the N-terminal and C-terminal regions of Pup-GGQ bind strongly to Mpa. This suggests a mechanism by which transient binding of Mpa to the proteasome CP controls the fate of Pup.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Mycobacterium tuberculosis/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Precursores de Proteínas/metabolismo , Ubiquitinas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Sitios de Unión , Escherichia coli/genética , Escherichia coli/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/genética , Resonancia Magnética Nuclear Biomolecular/métodos , Complejo de la Endopetidasa Proteasomal/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Precursores de Proteínas/química , Precursores de Proteínas/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ubiquitinas/química , Ubiquitinas/genética
16.
PLoS One ; 8(6): e65180, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23785412

RESUMEN

Peptide aptamers are small proteins containing a randomized peptide sequence embedded into a stable protein scaffold, such as Thioredoxin. We developed a robust method for building a Combinatorial Library of Improved Peptide aptamers (CLIPs) of high complexity, containing ≥3×10(10) independent clones, to be used as a molecular tool in the study of biological pathways. The Thioredoxin scaffold was modified to increase solubility and eliminate aggregation of the peptide aptamers. The CLIPs was used in a yeast two-hybrid screen to identify peptide aptamers that bind to various domains of the Receptor for Advanced Glycation End products (RAGE). NMR spectroscopy was used to identify interaction surfaces between the peptide aptamers and RAGE domains. Cellular functional assays revealed that in addition to directly interfering with known binding sites, peptide aptamer binding distal to ligand sites also inhibits RAGE ligand-induced signal transduction. This finding underscores the potential of using CLIPs to select allosteric inhibitors of biological targets.


Asunto(s)
Aptámeros de Péptidos/farmacología , Receptores Inmunológicos/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Animales , Aptámeros de Péptidos/química , Línea Celular , Masculino , Ratones , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Ratas , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/química , Solubilidad , Tiorredoxinas/química , Tiorredoxinas/genética , Tiorredoxinas/metabolismo , Técnicas del Sistema de Dos Híbridos
17.
Structure ; 19(5): 722-32, 2011 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-21565706

RESUMEN

Nonenzymatic protein glycation results in the formation of advanced glycation end products (AGEs) that are implicated in the pathology of diabetes, chronic inflammation, Alzheimer's disease, and cancer. AGEs mediate their effects primarily through a receptor-dependent pathway in which AGEs bind to a specific cell surface associated receptor, the Receptor for AGEs (RAGE). N(ɛ)-carboxy-methyl-lysine (CML) and N(ɛ)-carboxy-ethyl-lysine (CEL), constitute two of the major AGE structures found in tissue and blood plasma, and are physiological ligands of RAGE. The solution structure of a CEL-containing peptide-RAGE V domain complex reveals that the carboxyethyl moiety fits inside a positively charged cavity of the V domain. Peptide backbone atoms make specific contacts with the V domain. The geometry of the bound CEL peptide is compatible with many CML (CEL)-modified sites found in plasma proteins. The structure explains how such patterned ligands as CML (CEL)-proteins bind to RAGE and contribute to RAGE signaling.


Asunto(s)
Proteínas Sanguíneas/química , Dipéptidos/metabolismo , Receptores Inmunológicos/química , Proteínas Recombinantes/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Sanguíneas/metabolismo , Clonación Molecular , Diabetes Mellitus/metabolismo , Diabetes Mellitus/patología , Dipéptidos/síntesis química , Escherichia coli , Productos Finales de Glicación Avanzada , Glicosilación , Inflamación/metabolismo , Inflamación/patología , Modelos Moleculares , Datos de Secuencia Molecular , Neoplasias/metabolismo , Neoplasias/patología , Conformación Proteica , Estructura Terciaria de Proteína , Receptor para Productos Finales de Glicación Avanzada , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
J Med Chem ; 52(11): 3516-22, 2009 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-19422228

RESUMEN

We developed an in-cell NMR assay for screening small molecule interactor libraries (SMILI-NMR) for compounds capable of disrupting or enhancing specific interactions between two or more components of a biomolecular complex. The method relies on the formation of a well-defined biocomplex and utilizes in-cell NMR spectroscopy to identify the molecular surfaces involved in the interaction at atomic scale resolution. Changes in the interaction surface caused by a small molecule interfering with complex formation are used as a read-out of the assay. The in-cell nature of the experimental protocol insures that the small molecule is capable of penetrating the cell membrane and specifically engaging the target molecule(s). Utility of the method was demonstrated by screening a small dipeptide library against the FKBP-FRB protein complex involved in cell cycle arrest. The dipeptide identified by SMILI-NMR showed biological activity in a functional assay in yeast.


Asunto(s)
Evaluación Preclínica de Medicamentos/métodos , Espectroscopía de Resonancia Magnética/métodos , Bibliotecas de Moléculas Pequeñas , Bioensayo , Dipéptidos/química , Dipéptidos/farmacología , Modelos Moleculares , Saccharomyces cerevisiae/efectos de los fármacos , Tacrolimus/análogos & derivados , Tacrolimus/química , Proteínas de Unión a Tacrolimus/efectos de los fármacos
19.
J Biol Chem ; 283(40): 27255-69, 2008 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-18667420

RESUMEN

The receptor for advanced glycated end products (RAGE) is a multiligand receptor that is implicated in the pathogenesis of various diseases, including diabetic complications, neurodegenerative disorders, and inflammatory responses. The ability of RAGE to recognize advanced glycated end products (AGEs) formed by nonenzymatic glycoxidation of cellular proteins places RAGE in the category of pattern recognition receptors. The structural mechanism of AGE recognition was an enigma due to the diversity of chemical structures found in AGE-modified proteins. Here, using NMR spectroscopy we showed that the immunoglobulin V-type domain of RAGE is responsible for recognizing various classes of AGEs. Three distinct surfaces of the V domain were identified to mediate AGE-V domain interactions. They are located in the positively charged areas of the V domain. The first interaction surface consists of strand C and loop CC ', the second interaction surface consists of strand C ', strand F, and loop FG, and the third interaction surface consists of strand A ' and loop EF. The secondary structure elements of the interaction surfaces exhibit significant flexibility on the ms-micros time scale. Despite highly specific AGE-V domain interactions, the binding affinity of AGEs for an isolated V domain is low, approximately 10 microm. Using in-cell fluorescence resonance energy transfer we show that RAGE is a constitutive oligomer on the plasma membrane. We propose that constitutive oligomerization of RAGE is responsible for recognizing patterns of AGE-modified proteins with affinities less than 100 nm.


Asunto(s)
Productos Finales de Glicación Avanzada/química , Receptor para Productos Finales de Glicación Avanzada/química , Línea Celular , Complicaciones de la Diabetes/genética , Complicaciones de la Diabetes/metabolismo , Productos Finales de Glicación Avanzada/genética , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Inflamación/genética , Inflamación/metabolismo , Espectroscopía de Resonancia Magnética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Unión Proteica/genética , Estructura Cuaternaria de Proteína/genética , Estructura Secundaria de Proteína/genética , Estructura Terciaria de Proteína/genética , Receptor para Productos Finales de Glicación Avanzada/genética , Receptor para Productos Finales de Glicación Avanzada/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA