Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Commun Biol ; 6(1): 326, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973344

RESUMEN

Bromus tectorum L. is arguably the most successful invasive weed in the world. It has fundamentally altered arid ecosystems of the western United States, where it now found on an excess of 20 million hectares. Invasion success is related to avoidance of abiotic stress and human management. Early flowering is a heritable trait utilized by B. tectorum, enabling the species to temporally monopolize limited resources and outcompete the native plant community. Thus, understanding the genetic underpinning of flowering time is critical for the design of integrated management strategies. To study flowering time traits in B. tectorum, we assembled a chromosome scale reference genome for B. tectorum. To assess the utility of the assembled genome, 121 diverse B. tectorum accessions are phenotyped and subjected to a genome wide association study (GWAS). Candidate genes, representing homologs of genes that have been previously associated with plant height or flowering phenology traits in related species are located near QTLs we identified. This study uses a high-resolution GWAS to identify reproductive phenology genes in a weedy species and represents a considerable step forward in understanding the mechanisms underlying genetic plasticity in one of the most successful invasive weed species.


Asunto(s)
Bromus , Ecosistema , Humanos , Estados Unidos , Bromus/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Adaptación Fisiológica/genética
2.
Pest Manag Sci ; 78(11): 4728-4740, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35872633

RESUMEN

BACKGROUND: Salsola tragus is a widespread and problematic weed of semi-arid wheat production globally, and in the inland Pacific Northwest region of the USA. The species exhibits high levels of phenotypic diversity across its range and, at least in California USA, previous work has described cryptic diversity comprising a multi-species complex. Such cryptic diversity could suggest the potential for a differential response to management inputs between groups, and have important implications for the spread of herbicide resistance or other adaptive traits within populations. We used a genotyping-by-sequencing approach to characterize the population structure of S. tragus in the inland Pacific Northwest. RESULTS: Our results indicated that the population in this region is comprised of a single, tetraploid species (S. tragus sensu latu) with weak population structure on a regional scale. Isolation-by-distance appears to be the primary pattern of structure, but an independent set of weakly differentiated clusters of unknown origin were also apparent, along with a mixed mating system and high levels of largely unstructured genetic diversity. CONCLUSIONS: Despite considerable phenotypic variability within S. tragus in the region, agronomic weed managers can likely consider it as a single entity across the region, rather than a collection of cryptic subgroups with possible differential responses to management inputs or agroecosystem conditions. A lack of strong barriers to migration and gene flow mean that adaptive traits, such as herbicide resistance, can be expected to spread rapidly through populations across the region. © 2022 Society of Chemical Industry.


Asunto(s)
Salsola , Flujo Génico , Resistencia a los Herbicidas/genética , Noroeste de Estados Unidos , Salsola/fisiología
3.
AoB Plants ; 13(4): plab049, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34466213

RESUMEN

Mayweed chamomile (Anthemis cotula) is a globally invasive, troublesome annual weed but knowledge of its genetic diversity, population structure in invaded regions and invasion patterns remains unstudied. Therefore, germplasm from 19 A. cotula populations (sites) from three geographically distinct invaded regions: the Walla Walla Basin (located in southern Washington) and the Palouse (located in both northern Idaho and eastern Washington), Pacific Northwest, USA and Kashmir Valley, India were grown in the greenhouse for DNA extraction and sequencing. A total of 18 829 single-nucleotide polymorphisms were called and filtered for each of 89 samples. Pairwise F ST, Nei's genetic distance, heterozygosity, Wright's inbreeding coefficient (F) and self-fertilization rates were estimated for populations within and among the three regions with a total of 19 populations comprised of 89 individuals. Overall measurements of genetic variation were low but significant among regions, populations and individuals. Despite the weak genetic structure, two main genetic clusters were evident, one comprised of populations from Palouse and Kashmir Valley, the other comprised of populations from the Walla Walla Basin. Significant selfing was observed in populations from the Walla Walla Basin and Palouse but not from Kashmir Valley, indicating that Mayweed chamomile in the Pacific Northwest, USA could persist with low pollinator or pollen donor densities. Although F ST values between the regions indicate Palouse populations are more closely related to Kashmir Valley than to Walla Walla Basin populations, based on Migrate-n analysis, panmixis was the most likely model, suggesting an unrestricted gene flow among all three regions. Our study indicated that Kashmir Valley populations either originated from or shared the origin with the Palouse populations, suggesting human-mediated migration of A. cotula between regions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA