Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Más filtros

Intervalo de año de publicación
1.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38412000

RESUMEN

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Asunto(s)
Acanthamoeba castellanii , Amebicidas , Amebicidas/farmacología , Muerte Celular , Apoptosis , Indoles/farmacología
2.
J Water Health ; 21(3): 443-450, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37338323

RESUMEN

Despite the Naegleria genus being isolated from different natural environments such as water, soil, and air, not all Naegleria species are capable of causing infections in humans, and they are capable of completing their life cycle in environmental niches. However, the presence of this genus may suggest the existence of one of the highly pathogenic free-living amoeba (FLA) species: Naegleria fowleri or the brain-eating amoeba. This facultative parasitic protozoon represents a risk to public health, mainly related to domestic and agricultural waters. In this research, our main objective was to determine the existence of pathogenic protozoa in the Santa Cruz wastewater treatment plant, Santiago Island. Using 5 L of water we confirmed the presence of potentially pathogenic Naegleria australiensis, being the first report on Naegleria species in Cape Verde. This fact demonstrates the low efficiency in the treatment of wastewater and, consequently, a potential threat to public health. Nevertheless, more studies will be needed for the prevention and control of possible infections in this Macaronesian country.


Asunto(s)
Amoeba , Naegleria fowleri , Naegleria , Purificación del Agua , Humanos , Cabo Verde , Agua/parasitología
3.
Mem Inst Oswaldo Cruz ; 117: e210373, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35792751

RESUMEN

Free-living amoeba (FLA) group includes the potentially pathogenic genera Acanthamoeba, Naegleria, Balamuthia, Sappinia, and Vermamoeba, causative agents of human infections (encephalitis, keratitis, and disseminated diseases). In Brazil, the first report on pathogenic FLA was published in the 70s and showed meningoencephalitis caused by Naegleria spp. FLA studies are emerging, but no literature review is available to investigate this trend in Brazil critically. Thus, the present work aims to integrate and discuss these data. Scopus, PubMed, and Web of Science were searched, retrieving studies from 1974 to 2020. The screening process resulted in 178 papers, which were clustered into core and auxiliary classes and sorted into five categories: wet-bench studies, dry-bench studies, clinical reports, environmental identifications, and literature reviews. The papers dating from the last ten years account for 75% (134/178) of the total publications, indicating the FLA topic has gained Brazilian interest. Moreover, 81% (144/178) address Acanthamoeba-related matter, revealing this genus as the most prevalent in all categories. Brazil's Southeast, South, and Midwest geographic regions accounted for 96% (171/178) of the publications studied in the present work. To the best of our knowledge, this review is the pioneer in summarising the FLA research history in Brazil.


Asunto(s)
Acanthamoeba , Amoeba , Encefalitis , Brasil , Movimiento Celular , Humanos
4.
Parasitol Res ; 121(8): 2399-2404, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35660958

RESUMEN

Free-living amoebae (FLA) are protozoa which have been reported in different countries worldwide from diverse sources (water, soil, dust, air), contributing to the environmental microbiological contamination. Most of the FLA species present a life cycle with two different phases: an active vegetative and physiologically form named trophozoite, and an extremely resistant phase called cyst. Acanthamoeba spp., Naegleria fowleri, Balamuthia mandrillaris, Sapinia pedata, Vahlkampfia spp., Paravahlkampfia spp. and Vermamoeba vermiformis have been reported not only as causal agents of several opportunistic diseases including fatal encephalitis or epithelial disorders, but also as capable to favour the intracellular survival of common pathogenic bacteria, which could avoid the typical water disinfection systems, non-effective against FLAs cysts. Even though Santiago Island possesses high levels of humidity compared to the rest of the archipelago of Cape Verde, the water resources are scarce. Therefore, it is important to carry out proper microbiological quality controls, which currently do not contemplate the FLA presence in most of the countries. In the present work, we have reported the presence of Acanthamoeba spp. (69.2%); Vannella spp. (15.4%); Vermamoeba vermiformis (7.7%) and the recently discovered Stenamoeba dejonckheerei (7.7%) in different water sources of Santiago Island.


Asunto(s)
Acanthamoeba , Amoeba , Lobosea , Cabo Verde , Agua
5.
Artículo en Inglés | MEDLINE | ID: mdl-33229426

RESUMEN

Pathogenic and opportunistic free-living amoebae such as Acanthamoeba spp. can cause keratitis (Acanthamoeba keratitis [AK]), which may ultimately lead to permanent visual impairment or blindness. Acanthamoeba can also cause rare but usually fatal granulomatous amoebic encephalitis (GAE). Current therapeutic options for AK require a lengthy treatment with nonspecific drugs that are often associated with adverse effects. Recent developments in the field led us to target cAMP pathways, specifically phosphodiesterase. Guided by computational tools, we targeted the Acanthamoeba phosphodiesterase RegA. Computational studies led to the construction and validation of a homology model followed by a virtual screening protocol guided by induced-fit docking and chemical scaffold analysis using our medicinal and biological chemistry (MBC) chemical library. Subsequently, 18 virtual screening hits were prioritized for further testing in vitro against Acanthamoeba castellanii, identifying amoebicidal hits containing piperidine and urea imidazole cores. Promising activities were confirmed in the resistant cyst form of the amoeba and in additional clinical Acanthamoeba strains, increasing their therapeutic potential. Mechanism-of-action studies revealed that these compounds produce apoptosis through reactive oxygen species (ROS)-mediated mitochondrial damage. These chemical families show promise for further optimization to produce effective antiacanthamoebal drugs.


Asunto(s)
Queratitis por Acanthamoeba , Acanthamoeba castellanii , Amebiasis , Amebicidas , Encefalitis Infecciosa , Queratitis por Acanthamoeba/tratamiento farmacológico , Amebiasis/tratamiento farmacológico , Amebicidas/farmacología , Humanos
6.
Bioorg Chem ; 110: 104784, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684715

RESUMEN

Primary Amoebic Encephalitis due to Naegleria fowleri species is a fatal infection of the Central Nervous System mostly affecting children and young adults. Infections often occur after performance of risk activities in aquatic habitats such as swimming and splashing. PAMs therapy remain a key issue to be solved which needs an urgent development. Recently, statins have been highlighted as possible novel compounds to treat PAM. Furthermore, type 2 statins due to improved pharmacological properties and lower toxicity could be use in the future. In the present work, three type 2 statins were checked for their activity against two type strains of N. fowleri. In addition, the effects at the cellular level triggered in treated amoebae were checked in order to evaluate if programmed cell death was induced. The obtained results showed that the tested statins, rosuvastatin, pitavastatin and cerivastatin were able to eliminate N. fowleri trophozoites and also induced PCD. Therefore, type 2 statins could be used in the near future for the treatment of PAM.


Asunto(s)
Apoptosis/efectos de los fármacos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Meningoencefalitis/tratamiento farmacológico , Naegleria fowleri/efectos de los fármacos , Piridinas/farmacología , Quinolinas/farmacología , Rosuvastatina Cálcica/farmacología , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Ratones , Estructura Molecular , Naegleria fowleri/crecimiento & desarrollo , Relación Estructura-Actividad
7.
Bioorg Chem ; 108: 104682, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33556696

RESUMEN

Opportunistic parasitic protozoa of genus Acanthamoeba are responsible to cause severe infections in humans such as Acanthamoeba Keratitis or Amoebic Granulomatous Encephalitis. Current treatments are usually toxic and inefficient and there is a need to access new therapeutic agents. The antiamoebic effects of nephthediol (1) and fourteen germacranolide and eudesmanolide sesquiterpene lactones (2-5, 7-12) isolated from the indigenous zoanthid Palythoa aff. clavata collected at the coast of Lanzarote, Canary Islands were studied against Acanthamoeba castellanii Neff, and the clinical strains A. polyphaga and A. griffini. 4-epi-arbusculin A (11) presented the lowest IC50 value (26,47 ± 1,69 µM) against A. castellanii Neff and low cytotoxicity against murine macrophages, followed by isobadgerin (2), which also showed to be active against A. castellanii Neff cysts. The studies on the mode of action of compounds 2 and 11 revealed these sesquiterpene lactones induce mechanisms of PDC on A. castellanii Neff.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Antozoos/química , Antiprotozoarios/farmacología , Lactonas/farmacología , Sesquiterpenos/farmacología , Animales , Antiprotozoarios/química , Antiprotozoarios/aislamiento & purificación , Relación Dosis-Respuesta a Droga , Lactonas/química , Lactonas/aislamiento & purificación , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Relación Estructura-Actividad
8.
Parasitol Res ; 120(8): 3001-3005, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34251514

RESUMEN

Efficacious treatments against Acanthamoeba Keratitis (AK) is challenging, often ineffective and linked to the intragenotype variation in the drug efficacy. Increased oxygen can facilitate host response and can inhibit some organisms. Herein, we report the effect of increased oxygen concentrations on Acanthamoeba spp. growth and its effect on ROS (reactive oxygen species) production. The exposition to pure oxygen could reduce cell growth by at least 60% for Acanthamoeba castellanii Neff, Acanthamoeba polyphaga, and Acanthamoeba griffini. The increase in ROS production confirming that oxygen cell's growth inhibition was due to oxidative stress. Further studies are needed to determine oxygen saturation level, time of oxygen exposition, and number of sessions needed to eliminate the parasite.


Asunto(s)
Acanthamoeba castellanii , Estrés Oxidativo , Oxígeno , Acanthamoeba castellanii/crecimiento & desarrollo , Oxígeno/farmacología , Especies Reactivas de Oxígeno
9.
Bioorg Chem ; 99: 103791, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32247111

RESUMEN

A collection of N-substituted quinolin-2(1H)-ones were screened against a panel of clinically relevant protozoa (Leishmania, Trypanosoma and Acanthamoeba). Three quinolin-2(1H)-one compounds were identified as selective anti-Acanthamoeba agents. Further assessment revealed that these compounds were active against both trophozoite and cyst forms of A. castellanii Neff, and caused protozoa death via apoptosis. The data presented herein identify N-acyl quinolin-2(1H)-ones as a promising new class of selective anti-Acanthamoeba agents.


Asunto(s)
Queratitis por Acanthamoeba/tratamiento farmacológico , Acanthamoeba/efectos de los fármacos , Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Quinolonas/farmacología , Trypanosoma/efectos de los fármacos , Acanthamoeba/aislamiento & purificación , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Leishmania/aislamiento & purificación , Estructura Molecular , Pruebas de Sensibilidad Parasitaria , Quinolonas/síntesis química , Quinolonas/química , Relación Estructura-Actividad , Trypanosoma/aislamiento & purificación
10.
Exp Parasitol ; 197: 29-35, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30648558

RESUMEN

Free-living amoebae of the genus Acanthamoeba are the etiological agents of cutaneous lesions, granulomatous amoebic encephalitis (GAE) and amoebic keratitis (AK), which are chronic infections with poor prognosis if not diagnosed promptly. Currently, there is no optimal therapeutic scheme to eradicate the pathologies these protozoa cause. In this study we report the morphological and molecular identification of three species of the genus Acanthamoeba, belonging to T4 group; A. polyphaga isolated from the corneal ulcer of a patient sample of AK case; A. castellanii isolated from the contact lens of an AK patient and A. palestinensis obtained from a soil sample. The in vitro activity of chlorhexidine, itraconazole and voriconazole drugs against trophic stage was also evaluated through a colorimetric assay based on the oxidation-reduction of alamar blue. The strains in the study were sensitive to the evaluated drugs; although when determining the 50% inhibitory concentration (IC50) statistically significant differences were observed. A. castellanii showed to be highly sensitive to voriconazole (0.66 ±â€¯0.13 µM) but the least sensitive to chlorhexidine and itraconazole (8.61 ±â€¯1.63 and 20.14 ±â€¯4.93 µM, respectively), A. palestinensis showed the highest sensitivity to itraconazole (0.502 ±â€¯0.11 µM) and A. polyphaga expressed moderate sensitivity to chlorhexidine and itraconazole and lower sensitivity to voriconazole (10.10 ±â€¯2.21 µM). These results showed that species of the genus Acanthamoeba express different sensitivity to the tested drugs, which could explain the problems surrounding the establishment of a treatment of choice in the infections caused by these amoebae. We consider that although chlorhexidine and itraconazole show good activity on these amoebae and have been used in cases of AK in Mexico with acceptable results, voriconazole should be considered as the first therapeutic option of future Acanthamoeba infections that will be diagnosed in our country.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Amebiasis/parasitología , Antiinfecciosos/farmacología , Clorhexidina/farmacología , Itraconazol/farmacología , Voriconazol/farmacología , Acanthamoeba/clasificación , Acanthamoeba/genética , Queratitis por Acanthamoeba/parasitología , Amebiasis/tratamiento farmacológico , Lentes de Contacto/parasitología , Úlcera de la Córnea/parasitología , ADN Protozoario/aislamiento & purificación , Genotipo , Humanos , Concentración 50 Inhibidora , México , Suelo/parasitología
11.
Exp Parasitol ; 201: 90-92, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31059693

RESUMEN

Acanthamoeba are free living amoeba that have been isolated from different environments like soil, water, air dust. Moreover, they are also able to act as opportunist pathogens, mainly causing a fatal encephalitis and also keratitis in both human and animals. This study was aimed to evaluate the activity of the Medicines for Malaria Venture (MMV) compounds against the trophozoite stage of Acanthamoeba castellanii Neff. Sixteen compounds showed ≥90% inhibition of parasite growth in the initial screen (10 µM). Those set were further evaluated to determine the inhibitor concentration that inhibit the 50% of the initial population and cytotoxicity against murine macrophages. Among the compounds included in the pathogen box, pentamidine and posaconazole were the most effective against this parasite with an of IC50 of 0.567 ±â€¯0.04 and 0.630 ±â€¯0.11, respectively.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Amebicidas/clasificación , Animales , Línea Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Concentración 50 Inhibidora , Ratones , Pentamidina/farmacología , Triazoles/farmacología , Trofozoítos/efectos de los fármacos
12.
Exp Parasitol ; 196: 22-27, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30472333

RESUMEN

Acanthamoeba keratitis (AK) is a sight-threatening corneal infection. The early symptoms include redness, pain, photophobia and intense tearing. Chronic infection usually progresses to stromal inflammation, ring ulcers, corneal opacification and hypopyon. Here we document an AK case in a high myopic 38-year-old woman from Mexico City, with a history of wearing contact lenses while swimming. Corneal scrapes cultures were positive only for amoebae, consequently a treatment including netilmicin 0.3% and oral itraconazole 100 mg/12 h was prescribed. The infection was resolved after 8 months, leaving a slight leucoma outside the visual axis, with a visual acuity of 20/150. In the laboratory, the amoebic isolate was axenized in PYG medium, with an optimal growth at 30 °C, and was identified morphologically as Acanthamoeba polyphaga according to the taxonomic criteria of Page (1988) and placed in the T4 group by genotyping. The virulence of this strain (40%) was determined by intranasal inoculation of 1 × 106/20 µl trophozoites in BALB/c mice recovering from brain, proving their invasion ability and by the interaction with monolayers of epithelial cells of the established MDCK line of canine kidney origin (1:2 ratio of interaction), at 1, 3, 6, 8 and 24 h; trophozoites migrated to cell junctions inducing few lytic zones. In addition to the biological characterization, in vitro drug sensitivity tests were performed using chlorhexidine, itraconazole, netilmicin and voriconazole. Results revealed that voriconazole was the most effective compound. A. polyphaga remains as one of the most frequently isolated species producing AK. The treatment of AK case using netilmicin and oral itraconazole solved the disease, but the healing process was wide-ranging (8 months). The use of voriconazole and chlorhexidine may be an alternative treatment of future AK cases in Mexico.


Asunto(s)
Queratitis por Acanthamoeba/parasitología , Acanthamoeba/efectos de los fármacos , Antiinfecciosos/administración & dosificación , Acanthamoeba/aislamiento & purificación , Queratitis por Acanthamoeba/tratamiento farmacológico , Adulto , Animales , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antiinfecciosos/farmacología , Antifúngicos/administración & dosificación , Antifúngicos/farmacología , Clorhexidina/farmacología , Lentes de Contacto/efectos adversos , Lentes de Contacto/parasitología , Perros , Femenino , Humanos , Concentración 50 Inhibidora , Itraconazol/administración & dosificación , Itraconazol/farmacología , Células de Riñón Canino Madin Darby , México , Ratones , Ratones Endogámicos BALB C , Midriáticos/administración & dosificación , Netilmicina/administración & dosificación , Netilmicina/farmacología , Pruebas de Sensibilidad Parasitaria , Fenilefrina/administración & dosificación , Tropicamida/administración & dosificación , Voriconazol/farmacología
13.
Mar Drugs ; 17(10)2019 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-31627366

RESUMEN

Indolocarbazoles are a family of natural alkaloids characterized by their potent protein kinase and topoisomerase I inhibitory activity. Among them, staurosporine (1) has exhibited promising inhibitory activity against parasites. Based on new insights on the activity and mechanism of action of STS in Acanthamoeba parasites, this work reports the isolation, identification, and the anti-Acanthamoeba activity of the minor metabolites 7-oxostaurosporine (2), 4'-demethylamino-4'-oxostaurosporine (3), and streptocarbazole B (4), isolated from cultures of the mangrove strain Streptomyces sanyensis. A clear correlation between the antiparasitic activities and the structural elements and conformations of the indolocarbazoles 1-4 was observed. Also, the study reveals that 7-oxostaurosporine (2) affects membrane permeability and causes mitochondrial damages on trophozoites of A. castellanii Neff.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Antiparasitarios/farmacología , Streptomyces/metabolismo , Alcaloides/farmacología , Carbazoles/farmacología , Indoles/farmacología , Mitocondrias/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Estaurosporina/análogos & derivados , Estaurosporina/farmacología
14.
Mar Drugs ; 17(7)2019 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-31331002

RESUMEN

Acanthamoeba genus is a widely distributed and opportunistic parasite with increasing importance worldwide as an emerging pathogen in the past decades. This protozoan has an active trophozoite stage, a cyst stage, and is dormant and very resistant. It can cause Acanthamoeba keratitis, an ocular sight-threatening disease, and granulomatous amoebic encephalitis, a chronic, very fatal brain pathology. In this study, the amoebicidal activity of sixteen Laurencia oxasqualenoid metabolites and semisynthetic derivatives were tested against Acanthamoeba castellanii Neff. The results obtained point out that iubol (3) and dehydrothyrsiferol (1) possess potent activities, with IC50 values of 5.30 and 12.83 µM, respectively. The hydroxylated congeners thyrsiferol (2) and 22-hydroxydehydrothyrsiferol (4), active in the same value range at IC50 13.97 and 17.00 µM, are not toxic against murine macrophages; thus, they are solid candidates for the development of new amoebicidal therapies.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Amebicidas/farmacología , Laurencia/química , Extractos Vegetales/farmacología , Escualeno/farmacología , Amebicidas/aislamiento & purificación , Animales , Línea Celular , Furanos/aislamiento & purificación , Furanos/farmacología , Concentración 50 Inhibidora , Macrófagos , Ratones , Extractos Vegetales/aislamiento & purificación , Piranos/aislamiento & purificación , Piranos/farmacología , Escualeno/análogos & derivados , Escualeno/aislamiento & purificación , Pruebas de Toxicidad , Trofozoítos/efectos de los fármacos
15.
Parasitol Res ; 118(3): 927-933, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30707288

RESUMEN

In this work, the presence of free-living amoebae (FLA) in dishcloths collected from human activity related places was evaluated. Once in the laboratory, 6 cm2 pieces of each dishcloth were cut and washed with Page's Amoeba Solution (PAS) in sterile tubes. After washing, the dishcloth pieces were removed, and the tubes were centrifuged (1500 rpm for 10 min). The obtained pellets were seeded onto 2% non-nutrient agar (NNA) plates, incubated at room temperature and were monitored daily an inverted microscope. Once clonal cultures were obtained (only one type of FLA observed), molecular analyses were carried out in order to characterize the isolated FLA strains at the genus/genotype level. From the 31 dishcloths which were processed, FLA strains were isolated in NNA plates in 13 the samples (13/31, 42%). However, and due to bacterial overgrowth, only six strains were characterized at the molecular level (PCR and sequencing). Among the PCR positive strains, 83.33% (5/6) of the PCR positive samples belonged to Acanthamoeba genus (80% (4/5) to genotype T4 and 20% (1/5) to genotype T11). Furthermore, one strain was identified as a member of Allovahlkampfia genus using both morphological and molecular approaches. To the best of our knowledge, this is the first report on the isolation of Allovahlkampfia genus from dishcloths and in the Spanish territory. The presence of FLA in dishcloths should raise awareness to improve hygienic strategies in food- and domestic-related environments, in order to prevent contamination with these protozoa, which are able to be pathogenic and even to act as vehicles of other pathogenic agents.


Asunto(s)
Acanthamoeba/clasificación , Acanthamoeba/aislamiento & purificación , Amoeba/clasificación , Amoeba/aislamiento & purificación , Manipulación de Alimentos/métodos , Genotipo , Humanos , Reacción en Cadena de la Polimerasa , España
16.
Mar Drugs ; 16(11)2018 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-30423882

RESUMEN

Focused on our interest to develop novel antiparasistic agents, the present study was aimed to evaluate the biological activity of an extract of Laurencia johnstonii collected in Baja California Sur, Mexico, against an Acantamoeba castellanii Neff strain. Bioassay-guided fractionation allowed us to identify the amoebicidal diastereoisomers α-bromocuparane (4) and α-isobromocuparane (5). Furthermore, bromination of the inactive laurinterol (1) and isolaurinterol (2) yielded four halogenated derivatives, (6)⁻(9), which improved the activity of the natural sesquiterpenes. Among them, the most active compound was 3α-bromojohnstane (7), a sesquiterpene derivative which possesses a novel carbon skeleton johnstane.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Antiparasitarios/farmacología , Organismos Acuáticos/química , Laurencia/química , Sesquiterpenos/farmacología , Antiparasitarios/química , Antiparasitarios/aislamiento & purificación , Bioensayo/métodos , Halogenación , Concentración 50 Inhibidora , México , Estructura Molecular , Sesquiterpenos/química , Sesquiterpenos/aislamiento & purificación , Estereoisomerismo , Relación Estructura-Actividad
17.
Parasitol Res ; 117(9): 2855-2867, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29955971

RESUMEN

According to the World Health Organization, leishmaniasis is considered as a major neglected tropical disease causing an enormous impact on global public health. Available treatments were complicated due to the high resistance, toxicity, and high cost. Therefore, the search for novel sources of anti-leishmania agents is an urgent need. In the present study, an in vitro evaluation of the leishmanicidal activity of the essential oil of Tunisian chamomile (Matricaria recutita L.) was carried out. Chamomile essential oil exhibits a good activity on promastigotes forms of L. amazonensis and L. infantum with a low inhibitory concentration at 50% (IC50) (10.8 ± 1.4 and 10.4 ± 0.6 µg/mL, respectively). Bio-guided fractionation was developed and led to the identification of (-)-α-bisabolol as the most active molecule with low IC50 (16.0 ± 1.2 and 9.5 ± 0.1 µg/mL for L. amazonensis and L. infantum, respectively). This isolated sesquiterpene alcohol was studied for its activity on amastigotes forms (IC50 = 5.9 ± 1.2 and 4.8 ± 1.3 µg/mL, respectively) and its cytotoxicity (selectivity indexes (SI) were 5.4 and 6.6, respectively). The obtained results showed that (-)-α-bisabolol was able to activate a programmed cell death process in the promastigote stage of the parasite. It causes phosphatidylserine externalization and membrane damage. Moreover, it decreases the mitochondrial membrane potential and total ATP levels. These results highlight the potential use of (-)-α-bisabolol against both L. amazonensis and L. infantum, and further studies should be undertaken to establish it as novel leishmanicidal therapeutic agents.


Asunto(s)
Antiprotozoarios/farmacología , Leishmania/efectos de los fármacos , Leishmaniasis/tratamiento farmacológico , Aceites Volátiles/farmacología , Sesquiterpenos/farmacología , Animales , Manzanilla/química , Concentración 50 Inhibidora , Matricaria/química , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Sesquiterpenos Monocíclicos , Pruebas de Sensibilidad Parasitaria , Fosfatidilserinas/metabolismo , Extractos Vegetales/farmacología , Túnez
18.
Parasitol Res ; 117(2): 531-537, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29306999

RESUMEN

The lack of an effective chemotherapy for treatment of protozoan disease urges a wide investigation for active compounds, and plant-derived compounds continue to provide key leads for therapeutic agents. The current study reports the in vitro antiprotozoal evaluation of the Algerian medicinal plant Pulicaria inuloides against Leishmania amazonensis, Trypanosoma cruzi, and Acanthamoeba castellanii str. Neff. All the extracts from the aerial part showed to be present a higher leishmanicidal activity than anti-Acanthamoeba or Trypanosoma. Therefore, bioguided fractionation of the active CHCl3 extract led to the isolation and characterization of the flavonol, quercetagetin-3,5,7,3'-tetramethyl ether (1) as the main component. The structure of compound 1 was established by extensive 1D and 2D NMR spectroscopic analysis (COSY, HSQC, HMBC, and ROESY experiments), chemical transformation (derivatives 2 and 3), and comparison with data in the literature. Compound 1 and derivatives 2 and 3 were further evaluated against the promastigote and amastigote stage of L. amazonensis. Compounds 1-3 exhibited moderate leishmanicidal activity with IC50 values ranging from 0.234 to 0.484 mM and from 0.006 to 0.017 mM for the promastigote and amastigote forms, respectively, as well as low toxicity levels on macrophages (CC50 ranging from 0.365 to 0.664 mM). This study represents the first report of the antiprotozoal evaluation of Pulicaria inuloides, and the results highlight this species as a promising source of leishmanicidal agents.


Asunto(s)
Acanthamoeba castellanii/efectos de los fármacos , Flavonoides/farmacología , Leishmania mexicana/efectos de los fármacos , Extractos Vegetales/farmacología , Pulicaria/metabolismo , Tripanocidas/farmacología , Trypanosoma cruzi/efectos de los fármacos , Argelia , Animales , Fraccionamiento Químico , Flavonoides/química , Extractos Vegetales/química , Plantas Medicinales/metabolismo , Tripanocidas/química
19.
Artículo en Inglés | MEDLINE | ID: mdl-28096161

RESUMEN

Here the mechanism by which perifosine induced cell death in Leishmania donovani and Leishmania amazonensis is described. The drug reduced Leishmania mitochondrial membrane potential and decreased cellular ATP levels while increasing phosphatidylserine externalization. Perifosine did not increase membrane permeabilization. We also found that the drug inhibited the phosphorylation of Akt in the parasites. These results highlight the potential use of perifosine as an alternative to miltefosine against Leishmania.


Asunto(s)
Adenosina Trifosfato/antagonistas & inhibidores , Antiprotozoarios/farmacología , Leishmania donovani/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilcolina/análogos & derivados , Adenosina Trifosfato/biosíntesis , Apoptosis/efectos de los fármacos , Expresión Génica , Concentración 50 Inhibidora , Leishmania donovani/genética , Leishmania donovani/crecimiento & desarrollo , Leishmania donovani/metabolismo , Leishmania mexicana/genética , Leishmania mexicana/crecimiento & desarrollo , Leishmania mexicana/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosfatidilserinas/metabolismo , Fosforilación/efectos de los fármacos , Fosforilcolina/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
20.
Artículo en Inglés | MEDLINE | ID: mdl-28320723

RESUMEN

Free-living amoebae of the genus Acanthamoeba are the causal agents of a sight-threatening ulceration of the cornea called Acanthamoeba keratitis, as well as the rare but usually fatal disease granulomatous amoebic encephalitis. Although there are many therapeutic options for the treatment of Acanthamoeba infections, they are generally lengthy and/or have limited efficacy. For the best clinical outcome, treatments should target both the trophozoite and the cyst stages, as cysts are known to confer resistance to treatment. In this study, we document the activities of caffeine and maslinic acid against both the trophozoite and the cyst stages of three clinical strains of Acanthamoeba These drugs were chosen because they are reported to inhibit glycogen phosphorylase, which is required for encystation. Maslinic acid is also reported to be an inhibitor of extracellular proteases, which may be relevant since the protease activities of Acanthamoeba species are correlated with their pathogenicity. We also provide evidence for the first time that both drugs exert their anti-amoebal effects through programmed cell death.


Asunto(s)
Acanthamoeba/efectos de los fármacos , Acanthamoeba/metabolismo , Amebicidas/farmacología , Cafeína/farmacología , Triterpenos/farmacología , Apoptosis/efectos de los fármacos , Trofozoítos/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA