RESUMEN
The phase problem in the context of focusing synchrotron beams with X-ray lenses is addressed. The feasibility of retrieving the surface error of a lens system by using only the intensity of the propagated beam at several distances is demonstrated. A neural network, trained with a few thousand simulations using random errors, can predict accurately the lens error profile that accounts for all aberrations. It demonstrates the feasibility of routinely measuring the aberrations induced by an X-ray lens, or another optical system, using only a few intensity images.
RESUMEN
The ID10 beamline of the SESAME (Synchrotron-light for Experimental Science and Applications in the Middle East) synchrotron light source in Jordan was inaugurated in June 2023 and is now open to scientific users. The beamline, which was designed and installed within the European Horizon 2020 project BEAmline for Tomography at SESAME (BEATS), provides full-field X-ray radiography and microtomography imaging with monochromatic or polychromatic X-rays up to photon energies of 100â keV. The photon source generated by a 2.9â T wavelength shifter with variable gap, and a double-multilayer monochromator system allow versatile application for experiments requiring either an X-ray beam with high intensity and flux, and/or a partially spatial coherent beam for phase-contrast applications. Sample manipulation and X-ray detection systems are designed to allow scanning samples with different size, weight and material, providing image voxel sizes from 13â µm down to 0.33â µm. A state-of-the-art computing infrastructure for data collection, three-dimensional (3D) image reconstruction and data analysis allows the visualization and exploration of results online within a few seconds from the completion of a scan. Insights from 3D X-ray imaging are key to the investigation of specimens from archaeology and cultural heritage, biology and health sciences, materials science and engineering, earth, environmental sciences and more. Microtomography scans and preliminary results obtained at the beamline demonstrate that the new beamline ID10-BEATS expands significantly the range of scientific applications that can be targeted at SESAME.
RESUMEN
A hitherto unknown composition is highlighted in the red and black inks preserved on ancient Egyptian papyri from the Roman period (circa 100 to 200 CE). Synchrotron-based macro-X-ray fluorescence (XRF) mapping brings to light the presence of iron (Fe) and lead (Pb) compounds in the majority of the red inks inscribed on 12 papyrus fragments from the Tebtunis temple library. The iron-based compounds in the inks can be assigned to ocher, notably due to the colocalization of Fe with aluminum, and the detection of hematite (Fe2O3) by micro-X-ray diffraction. Using the same techniques together with micro-Fourier transform infrared spectroscopy, Pb is shown to be associated with fatty acid phosphate, sulfate, chloride, and carboxylate ions. Moreover, micro-XRF maps reveal a peculiar distribution and colocalization of Pb, phosphorus (P), and sulfur (S), which are present at the micrometric scale resembling diffused "coffee rings" surrounding the ocher particles imbedded in the red letters, and at the submicrometric scale concentrated in the papyrus cell walls. A similar Pb, P, and S composition was found in three black inks, suggesting that the same lead components were employed in the manufacture of carbon-based inks. Bearing in mind that pigments such as red lead (Pb3O4) and lead white (hydrocerussite [Pb3(CO3)2(OH)2] and/or cerussite [PbCO3]) were not detected, the results presented here suggest that the lead compound in the ink was used as a drier rather than as a pigment. Accordingly, the study calls for a reassessment of the composition of lead-based components in ancient Mediterranean pigments.
RESUMEN
A new algorithm to perform coherent mode decomposition of undulator radiation is proposed. It is based on separating the horizontal and vertical directions, reducing the problem by working with one-dimension wavefronts. The validity conditions of this approximation are discussed. Simulations require low computer resources and run interactively on a laptop. The focusing with lenses of the radiation emitted by an undulator in a fourth-generation storage ring (EBS-ESRF) is studied. Results are compared against multiple optics packages implementing a variety of methods for dealing with partial coherence: full two-dimension coherent mode decomposition, Monte Carlo combination of wavefronts from electrons entering the undulator with different initial conditions, and hybrid ray-tracing correcting geometrical optics with wave optics.
RESUMEN
The performance of a liquid-nitrogen-cooled high-heat-load monochromator with a horizontal scattering plane has been analysed, aiming to preserve the high quality of the X-ray beam in the vertical plane for downstream optics. Using finite-element analysis, height profiles of the crystal surface for various heat loads and the corresponding slope errors in the meridional and sagittal planes were calculated. Then the angular distortions of the reflected beam in both meridional and sagittal planes were calculated analytically and also modelled by ray tracing, revealing a good agreement of the two approaches. The results show that with increasing heat load in the crystal the slope errors of the crystal surface reach their smallest values first in the sagittal and then in the meridional plane. For the considered case of interest at a photon energy of 14.412â keV and the Si(111) reflection with a Bragg angle of 7.88°, the angular distortions of the reflected beam in the sagittal plane are an order of magnitude smaller than in the meridional one. Furthermore, they are smaller than the typical angular size of the beam source at the monochromator position. For a high-heat-load monochromator operating in the horizontal scattering plane, the sagittal angular distortions of the reflected beam appear in the vertical plane. Thus, such an instrument perfectly preserves the high quality of the X-ray beam in the vertical plane for downstream optics. Compared with vertical scattering, the throughput of the monochromatic beam with the horizontal scattering plane is reduced by only 3.3% for the new EBS source, instead of 34.3% for the old ESRF-1 machine. This identifies the horizontal-scattering high-heat-load monochromator as a device essentially free of the heat-load effects in the vertical plane and without significant loss in terms of throughput.
RESUMEN
Finite-element analysis is used to study the thermal deformation of a multilayer mirror due to the heat load from the undulator beam at a low-emittance synchrotron source, specifically the ESRF-EBS upgrade beamline EBSL-2. The energy bandwidth of the double-multilayer monochromator is larger than that of the relevant undulator harmonic, such that a considerable portion of the heat load is reflected. Consequently, the absorbed power is non-uniformly distributed on the surface. The geometry of the multilayer substrate is optimized to minimize thermally induced slope errors. We distinguish between thermal bending with constant curvature that leads to astigmatic focusing or defocusing and residual slope errors. For the EBSL-2 system with grazing angles θ between 0.2 and 0.4°, meridional and sagittal focal lengths down to 100â m and 2000â m, respectively, are found. Whereas the thermal bending can be tuned by varying the depth of the `smart cut', it is found that the geometry has little effect on the residual slope errors. In both planes they are 0.1-0.25â µrad. In the sagittal direction, however, the effect on the beam is drastically reduced by the `foregiveness factor', sin(θ). Optimization without considering the reflected heat load yields an incorrect depth of the `smart cut'. The resulting meridional curvature in turn leads to parasitic focal lengths of the order of 100â m.
RESUMEN
BACKGROUND: Phosphorus (P) deficiency limits crop production worldwide. Crops differ in their ability to acquire and utilise the P available. The aim of this study was to determine root traits (root exudates, root system architecture (RSA), tissue-specific allocation of P, and gene expression in roots) that (a) play a role in P-use efficiency and (b) contribute to large shoot zinc (Zn) concentration in Brassica oleracea. RESULTS: Two B. oleracea accessions (var. sabellica C6, a kale, and var. italica F103, a broccoli) were grown in a hydroponic system or in a high-throughput-root phenotyping (HTRP) system where they received Low P (0.025 mM) or High P (0.25 mM) supply for 2 weeks. In hydroponics, root and shoot P and Zn concentrations were measured, root exudates were profiled using both Fourier-Transform-Infrared spectroscopy and gas-chromatography-mass spectrometry and previously published RNAseq data from roots was re-examined. In HTRP experiments, RSA (main and lateral root number and lateral root length) was assessed and the tissue-specific distribution of P was determined using micro-particle-induced-X-ray emission. The C6 accession had greater root and shoot biomass than the F103 accession, but the latter had a larger shoot P concentration than the C6 accession, regardless of the P supply in the hydroponic system. The F103 accession had a larger shoot Zn concentration than the C6 accession in the High P treatment. Although the F103 accession had a larger number of lateral roots, which were also longer than in the C6 accession, the C6 accession released a larger quantity and number of polar compounds than the F103 accession. A larger number of P-responsive genes were found in the Low P treatment in roots of the F103 accession than in roots of the C6 accession. Expression of genes linked with "phosphate starvation" was up-regulated, while those linked with iron homeostasis were down-regulated in the Low P treatment. CONCLUSIONS: The results illustrate large within-species variability in root acclimatory responses to P supply in the composition of root exudates, RSA and gene expression, but not in P distribution in root cross sections, enabling P sufficiency in the two B. oleracea accessions studied.
Asunto(s)
Brassica/metabolismo , Fósforo/metabolismo , Raíces de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Genotipo , Hidroponía , Metaboloma , Brotes de la PlantaRESUMEN
Although the graphitic carbon contamination of synchrotron beamline optics has been an obvious problem for several decades, the basic mechanisms underlying the contamination process as well as the cleaning/remediation strategies are not understood and the corresponding cleaning procedures are still under development. In this study an analysis of remediation strategies all based on in situ low-pressure RF plasma cleaning approaches is reported, including a quantitative determination of the optimum process parameters and their influence on the chemistry as well as the morphology of optical test surfaces. It appears that optimum results are obtained for a specific pressure range as well as for specific combinations of the plasma feedstock gases, the latter depending on the chemical aspects of the optical surfaces to be cleaned.
RESUMEN
Background: The surface errors found in X-ray mirrors constitute a limiting factor for preserving beam quality. This is particularly important when the X-ray beam has low emittance and a significant coherence fraction, like in newly upgraded synchrotron storage rings. Methods: We studied the fringes observed in the image of an undulator-produced X-ray beam reflected by a high-quality toroidal mirror. The measurements and simulations were performed using different conditions: a photon beam either monochromatic or with large bandwidth, reflected by a mirror with variable curvature. Results: The experimental data are compared with up-to-date simulation including partial coherence. Conclusions: The observed fringes in the unfocused beam correlate with low spatial frequency structures in mirror profiles, irrespective of beam coherence. Both classical ray tracing and partially coherent simulations through coherent mode decomposition are confirmed as accurate methods for such simulations.
In this study, researchers focused on the surface errors found in X-ray mirrors and their impact on beam quality. These errors can be problematic, especially when dealing with X-ray beams coming from low emittance (a measure of beam size and divergence) electron beam sources and a significant coherence fraction (indicating the level of wavefront coherence). The researchers specifically investigated the fringes observed in the image of an X-ray beam produced by an undulator and reflected by a high-quality toroidal mirror. They conducted measurements and simulations under different conditions, such as using a monochromatic photon beam or one with a wide range of wavelengths, and varying the curvature of the mirror.
RESUMEN
Despite the increasing attention given to the impacts of nanoplastics in terrestrial environments, there is limited data about the effects on plants, and the quantitative information on uptake. In the present study, wheat plants grown in hydroponics were exposed to Pd-doped nanoplastics. This allowed us to quantify nanoplastics uptake and translocation to the shoots. Visualization of nanoplastics in roots was performed with synchrotron micro X-ray fluorescence (µXRF). Nanoplastics accumulated on the root epidermis, especially at the root tip and in root maturation zones. A close relationship between plant roots, rhizodeposits and nanoplastics behaviour was shown. Reinforcement of the cell wall in roots was evidenced using Fourier transform infrared spectroscopy (FTIR) and synchrotron-computed microtomography (µCT). Synchrotron-computed nanotomography (nanoCT) evidenced the presence of globular structures but they could not be identified as nanoplastics since they were observed both in the control and treated roots. By utilizing the inorganic tracer in the doped-nanoplastics, this study paves the road for elucidating interactions in more complex systems by using an integrative approach combining classical phytotoxicity markers with advanced nanometrology techniques.
Asunto(s)
Microplásticos , Plantones , Transporte Biológico , Hidroponía , Microplásticos/toxicidad , Raíces de Plantas/química , TriticumRESUMEN
TiO2 nanoparticles (TiO2-NPs) have a wide range of industrial applications (paintings, sunscreens, food and cosmetics) and is one of the most intensively used nanomaterials worldwide. Leaching from commercial products TiO2-NPs are predicted to significantly accumulate in wastewater sludges, which are then often used as soil amendment. In this work, sludge samples from four wastewater treatment plants of the Chihuahua State in Mexico were obtained during spring and summer (2017). A comprehensive characterization study was performed by X-ray based (laboratory and synchrotron) techniques and electron microscopy. Ti was detected in all sludge samples (1810-2760 mg/kg) mainly as TiO2 particles ranging from 40 nm up to hundreds of nm. Micro-XANES data was analyzed by principal component analysis and linear combination fitting enabling the identification of three predominant Ti species: anatase, rutile and ilmenite. Micro-XANES from the smaller Ti particles was predominantly anatase (68% + 32% rutile), suggesting these TiO2-NPs originate from paintings and cosmetics. TEM imaging confirmed the presence of nanoscale Ti with smooth surface morphologies resembling engineered TiO2-NPs. The size and crystalline phase of TiO2-NPs in the sludge from this region suggest increased reactivity and potential toxicity to agro-systems. Further studies should be dedicated to evaluating this.
RESUMEN
Amyloid plaques are one of the principal hallmarks of Alzheimer's disease and are mainly composed of Aß amyloid peptides together with other components such as lipids, cations, or glycosaminoglycans. The structure of amyloid peptide's aggregates is related to the peptide toxicity and highly depends on the aggregation conditions and the presence of cofactors. While fibrillary aggregates are nowadays considered nontoxic, oligomeric/granular (nonfibrillary) aggregates have been found to be toxic. In this work we have characterized in situ two different types of amyloid deposits analyzing sections of the cortex of patients in advanced stages of Alzheimer disease. By combining SR-µFTIR for the study of the secondary structure of the peptide and ThS fluorescence as an indicator of fibrillary structures, we found two types of plaques: ThS positive plaques with a clear infrared band at 1630 cm-1 that would correspond to fibrillary plaques and ThS negative plaques showing a mixture of nonfibrillar ß-sheet and unordered aggregated structures that would correspond to the nonfibrillary plaques (plaques with increased unordered structure). The analysis of the FTIR spectra has allowed correlation of lipid oxidation with the presence of nonfibrillary plaques. The metal composition of the two types of plaques has been analyzed using SR-nano-XRF and XANES. The results have shown higher accumulation of iron (mainly Fe2+) in fibrillary plaques than in nonfibrillary ones. However, in nonfibrillary plaques Fe3+ has been found to predominate over Fe2+. The identification of different types of aggregated forms and the different composition of metals found in the different types of plaques could be of paramount importance for the understanding of the development of Alzheimer disease.
Asunto(s)
Enfermedad de Alzheimer , Placa Amiloide , Péptidos beta-Amiloides , Humanos , Espectroscopía Infrarroja por Transformada de Fourier , Sincrotrones , Rayos XRESUMEN
Chronic psychological stress is an important public health issue which generates behavioral changes, anxiety, immunosuppression and oxidative damage. Piracetam is a cognitive enhancer, at cellular level it protects from oxidative stress. The aim of this study was to evaluate the effect of psychological stress and of piracetam on circulating mononuclear cells by analyzing the biochemical spectrome using Synchrotron Radiation Fourier Transform Infrared Microspectroscopy (SR-µFTIR). Rats were exposed for five days to a stressor (cat odor) under oral administration of piracetam (600â¯mg/kg). SR-µFTIR analysis showed a decrease in bands associated to the lipids region (2852â¯cm-1, 2923â¯cm-1 and 2962â¯cm-1) and an increase absorption of the amide I band (1654â¯cm-1) under stress conditions. The principal component analysis showed increase oxidation of lipids (decrease of 3010â¯cm-1, 2923â¯cm-1 and 2852â¯cm-1 bands) as well as proteins denaturation (increase of 1610â¯cm-1 and 1690â¯cm-1 bands) under stress. Piracetam provided protection to polyunsaturated lipids (pâ¯≤â¯0.001) and lipids/proteins ratio (pâ¯≤â¯0.001). Behaviorally, this drug diminished fear and anxiety in stressed animals by the plus maze test (pâ¯≤â¯0.002). However, this drug induced oxidative stress in mononuclear cells from unstressed animals and altered their behavior.
Asunto(s)
Leucocitos Mononucleares/efectos de los fármacos , Nootrópicos , Piracetam , Estrés Psicológico/sangre , Administración Oral , Animales , Biomarcadores/sangre , Femenino , Peroxidación de Lípido/efectos de los fármacos , Lípidos/sangre , Nootrópicos/administración & dosificación , Nootrópicos/farmacología , Piracetam/administración & dosificación , Piracetam/farmacología , Ratas , Ratas Sprague-DawleyRESUMEN
Antecedentes: Tenemos pocas estadísticas acerca de la prevalencia de el antígeno de superficie la Hepatitis B (HbSAg) en mujeres embarazadas en nuestro país. Materiales y métodos: Realizamos un estudio prospectivo, donde se estudiaron 50 embarazadas en trabajo de parto en el Hospital Dr. Simon Striddels en Azua, R.D., durante los meses de julio y agosto 1995. Resultados: Encontramos 4 casos de pacientes portadoras del antígeno de la Hepatitis B para un 8// y un recién nacido afectado (2//). Una de las portadoras tenía antecedentes personales de padecer clinicamente hepatitis. Tres de ellas vivían en la zona rural y habían tenido de 1 a 3 hijos. Comentario: el objetivo en la detención de la Hepatitis B, en mujeres embarazadas, es asegurar que estas lleven a cabo un control prenatal riguroso. Esta determinación tiene un gran valor en la prevención de trastornos que puedan perjudicar la salud de la madre y del niño