Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
Neuroimage ; 122: 246-61, 2015 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-26260429

RESUMEN

Apparent Diffusion Coefficient (ADC) maps can be used to characterize myelination and to detect abnormalities in the developing brain. However, given the normal variation in regional ADC with myelination, detection of abnormalities is difficult when based on visual assessment. Quantitative and automated analysis of pediatric ADC maps is thus desired but requires accurate brain extraction as the first step. Currently, most existing brain extraction methods are optimized for structural T1-weighted MR images of fully myelinated brains. Due to differences in age and image contrast, these approaches do not translate well to pediatric ADC maps. To address this problem, we present a multi-atlas brain extraction framework that has 1) specificity: designed and optimized specifically for pediatric ADC maps; 2) generality: applicable to multi-platform and multi-institution data, and to subjects at various neuro-developmental stages across the first 6 years of life; 3) accuracy: highly accurate compared to expert annotations; and 4) consistency: consistently accurate regardless of sources of data and ages of subjects. We show how we achieve these goals, via optimizing major components in a multi-atlas brain extraction framework, and via developing and evaluating new criteria for its atlas ranking component. Moreover, we demonstrate that these goals can be achieved with a fixed set of atlases and a fixed set of parameters, which opens doors for our optimized framework to be used in large-scale and multi-institution neuro-developmental and clinical studies. In a pilot study, we use this framework in a dataset containing scanner-generated ADC maps from 308 pediatric patients collected during the course of routine clinical care. Our framework leads to successful quantifications of the changes in whole-brain volumes and mean ADC values across the first 6 years of life.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/crecimiento & desarrollo , Imagen de Difusión por Resonancia Magnética/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Vaina de Mielina/fisiología , Algoritmos , Atlas como Asunto , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Reproducibilidad de los Resultados , Procesamiento de Señales Asistido por Computador
2.
J Digit Imaging ; 28(2): 194-204, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25316195

RESUMEN

Historically, medical images collected in the course of clinical care have been difficult to access for secondary research studies. While there is a tremendous potential value in the large volume of studies contained in clinical image archives, Picture Archiving and Communication Systems (PACS) are designed to optimize clinical operations and workflow. Search capabilities in PACS are basic, limiting their use for population studies, and duplication of archives for research is costly. To address this need, we augment the Informatics for Integrating Biology and the Bedside (i2b2) open source software, providing investigators with the tools necessary to query and integrate medical record and clinical research data. Over 100 healthcare institutions have installed this suite of software tools that allows investigators to search medical record metadata including images for specific types of patients. In this report, we describe a new Medical Imaging Informatics Bench to Bedside (mi2b2) module ( www.mi2b2.org ), available now as an open source addition to the i2b2 software platform that allows medical imaging examinations collected during routine clinical care to be made available to translational investigators directly from their institution's clinical PACS for research and educational use in compliance with the Health Insurance Portability and Accountability Act (HIPAA) Omnibus Rule. Access governance within the mi2b2 module is customizable per institution and PACS minimizing impact on clinical systems. Currently in active use at our institutions, this new technology has already been used to facilitate access to thousands of clinical MRI brain studies representing specific patient phenotypes for use in research.


Asunto(s)
Investigación Biomédica/organización & administración , Almacenamiento y Recuperación de la Información , Sistemas de Registros Médicos Computarizados/organización & administración , Sistemas de Información Radiológica/organización & administración , Diagnóstico por Imagen/métodos , Humanos , Innovación Organizacional , Mejoramiento de la Calidad , Integración de Sistemas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA