Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 39(1): 84, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427121

RESUMEN

This study aimed to investigate the effect of glycerol as an Optical Clearing Agent on the temperature profile of the skin during HyperThermic Laser Lipolysis using computer simulation. In this study, a three-layer model of the skin was used to simulate HyperThermic Laser Lipolysis. The Monte Carlo MCML code was used to investigate the propagation of laser photons inside skin tissue. The energy absorbed from photons is used as a heat source to determine the increase in temperature and assess thermal damage in the layers of the skin. The finite element method in COMSOL software was used for calculation. The simulation of single-pulse radiation exposure with and without applying glycerol to the skin model was investigated to assess the impact of glycerol. Glycerol decreases the temperature and thermal damage to the epidermis layer while increasing the temperature of the fat layer. Moreover, the presence of glycerol increases the depth of fat cell destruction. Glycerol, as a supplement, significantly improves the efficacy of HyperThermic Laser Lipolysis.


Asunto(s)
Glicerol , Lipólisis , Simulación por Computador , Rayos Láser , Piel
2.
Lasers Med Sci ; 37(2): 1333-1341, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34406533

RESUMEN

Nanoparticle-mediated hyperthermia is one of the prominent adjuvant therapies which has been faced by many problematic challenges such as efficiency and safety. To compare the nanoparticle-mediated photothermal therapy and radiofrequency electric field hyperthermia, green-synthesized curcumin-coated gold nanoparticles (Cur@AuNPs) were applied in an in vitro study. Using recently published methodologies, each step of the study was performed. Through green chemistry, curcumin was applied as both a reducing and a capping agent in the gold nanoparticle synthesis process. Various techniques were applied for the characterization of the synthesized nanoparticles. The heating rate of Cur@AuNPs in the presence of RFEF or laser irradiation was recorded by using a non-contact thermometer. The cellular uptake of the Cur@AuNPs was studied by ICP-AES. The cellular viability and apoptosis rate of different treatment were measured to investigate the effect of two different nano-hyperthermia techniques on the murine colorectal cancer cell line. The average size of Cur@AuNPs was 7.2 ± 3.3 nm. The stability of the gold nanoparticles in the phosphate buffer saline with and without fetal bovine serum was verified by UV-Vis spectroscopy. FTIR, UV-Vis spectroscopy, and TEM indicate that the stability is a result of phenolic coating on the surface of nanoparticles. Cur@AuNPs can absorb both light and radiofrequency electric field exposure in a way that could kill cancerous cells in a significant number (30% in 64 µg/ml concentration). Green-synthesized Cur@AuNPs could induce apoptosis cell death in photothermal therapy and radiofrequency electric field hyperthermia.


Asunto(s)
Curcumina , Hipertermia Inducida , Nanopartículas del Metal , Animales , Supervivencia Celular , Curcumina/farmacología , Oro/química , Hipertermia Inducida/métodos , Nanopartículas del Metal/química , Ratones
3.
Pol J Radiol ; 87: e215-e219, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582606

RESUMEN

Purpose: Diffusion-weighted imaging as a noninvasive functional modality plays a valuable role in the evaluation of prostate cancer. However, there is still no agreement on the number and range of b-values to be used. Therefore, the purpose of this study is to investigate the influence of b-value choice on the diagnostic performance of apparent diffusion coefficient (ADC) values for prostate cancer detection. Material and methods: Fifty-nine consecutive patients with abnormal digital rectal examination findings and raised serum prostate-specific antigen were chosen for magnetic resonance imaging of the prostate before systematic 12-core trans-rectal ultrasound-guided prostate biopsies. ADC values for each ROI were calculated from different b-value combinations (0-1600 s/mm2) by a monoexponential model. Mann-Whitney and the paired-sample t-test were used to compare the mean ADC values for malignant lesions and noncancerous tissues. ROC curve analysis was used to evaluate the diagnostic performance of ADC values in distinguishing prostate cancer from normal-tissue ROIs. Results: The differences between mean ADC values of malignant lesions and contralateral healthy tissues were significant for all the pairs of b-value combinations. The pair of b-values 50 and 1200 provided the highest AUC (0.94), with a sensitivity of 90.2%, a specificity of 92.6%, and an accuracy of 91.2% at an ADC cut-off of 1.23 × 10-3 mm2/s. Conclusions: Our study showed that using a 1.5-Tesla MRI scanner the diagnostic performance of ADC values estimated from the b-value pair 50 and 1200 s/mm2 was highest. However, some other b-value pairs provided statically comparable diagnostic performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA