RESUMEN
Leg Ulcer (LU) pathophysiology is still not well understood in sickle cell anaemia (SCA). We hypothesised that SCA patients with LU would be characterised by lower microvascular reactivity. The aim of the present study was to compare the microcirculatory function (transcutaneous oxygen pressure (TcPO2) on the foot and laser Doppler flowmetry on the arm) and several blood biological parameters between nine SCA patients with active LU (LU+) and 56 SCA patients with no positive history of LU (LU-). We also tested the effects of plasma from LU+ and LU- patients on endothelial cell activation. We observed a reduction of the TcPO2 in LU+ compared to LU- patients. In addition, LU+ patients exhibited lower cutaneous microvascular vasodilatory capacity in response to acetylcholine, current and local heating compared to LU- patients. Inflammation and endothelial cell activation in response to plasma did not differ between the two groups. Among the nine patients from the LU+ group, eight were followed and six achieved healing in 4.4 ± 2.5 months. Among thus achieving healing, microvascular vasodilatory capacity in response to acetylcholine, current and local heating and TcPO2 improved after healing. In conclusion, microcirculatory function is impaired in patients with LU, and improves with healing.
RESUMEN
The aim of this study was to (1) analyze blood viscosity, red blood cell (RBC) deformability, and aggregation in hospitalized patients with Coronavirus disease 19 (COVID-19); (2) test the associations between impaired blood rheology and blood coagulation; and (3) test the associations between impaired blood rheology and several indicators of clinical severity. A total of 172 patients with COVID-19, hospitalized in COVID-unit of the Internal Medicine Department (Lyon, France) participated in this study between January and May 2021. Clinical parameters were collected for each patient. Routine hematological/biochemical parameters, blood viscosity, RBC deformability and aggregation, and RBC senescence markers were measured on the first day of hospitalization. A control group of 38 healthy individuals was constituted to compare the blood rheological and RBC profile. Rotational thromboelastography was performed in 76 patients to study clot formation dynamics. Our study demonstrated that patients with COVID-19 had increased blood viscosity despite lower hematocrit than healthy individuals, as well as increased RBC aggregation. In-vitro experiments demonstrated a strong contribution of plasma fibrinogen in this RBC hyper-aggregation. RBC aggregation correlated positively with clot firmness, negatively with clot formation time, and positively with the length of hospitalization. Patients with oxygen supplementation had higher RBC aggregation and blood viscosity than those without, and patients with pulmonary lesions had higher RBC aggregation and enhanced coagulation than those without. This study is the first to demonstrate blood hyper-viscosity and RBC hyper-aggregation in a large cohort of patients with COVID-19 and describe associations with enhanced coagulation and clinical outcomes.
Asunto(s)
Viscosidad Sanguínea , COVID-19/sangre , Agregación Eritrocitaria , Eritrocitos/patología , Adulto , Anciano , Coagulación Sanguínea , COVID-19/diagnóstico , COVID-19/patología , Deformación Eritrocítica , Humanos , Persona de Mediana Edad , SARS-CoV-2/aislamiento & purificaciónRESUMEN
Glanzmann's thrombasthenia (GT) is a rare autosomal recessive disorder of platelet function. The frequent occurrence of alloimmunization due to repeated platelet transfusions is the major complication of the disease. Achieving hemostasis in these patients with anti-GPIIb-IIIa antibodies during surgical procedures is a significant challenge due to the high risk of bleeding. Recombinant activated factor VII (rFVIIa) is an effective agent for achieving hemostasis in alloimmunized Glanzmann's thrombasthenia patients. The key clinical question was to determine whether abdominal aortic aneurysm surgery can be safely performed with rFVIIa in Glanzmann's thrombasthenia patients with anti-GPIIb/IIIa antibodies and whether long-term antiplatelet therapy is suitable for these patients. The patient underwent endovascular aneurysm repair with intensive rFVIIa administration, experiencing neither bleeding nor thrombosis. Data regarding the surgical management of Glanzmann's thrombasthenia patients with anti-GPIIb-IIIa antibodies and the use of antithrombotics in this high-risk population are still very limited. Sharing clinical experience can be valuable for hematologists managing similar cases.
RESUMEN
Background: Despite systematic thromboprophylaxis, 30% of the COVID-19 patients in intensive care units develop thrombosis. This occurrence is associated with a hypofibrinolytic state measured by thromboelastometry when adding tissue plasminogen activator (tPA) to citrated whole blood for a further run for EXTEM (ROTEM). Objectives: Because hydroxyethyl starches (HESs) affect fibrin polymerization, we have assessed its potential effect on in vitro tPA-induced fibrinolysis. Methods: Fifteen successive COVID-19 patients from the local intensive care units were selected for tPA resistance occurrence. HES was added to whole blood samples with proportion similar to the pharmacologic recommendations. Samples were run for EXTEM on a ROTEM delta device after further addition of tPA. Paired controls were whole blood samples with the same volume of saline added. To assess the impact of HES on coagulation, thrombin generation was measured in 10 COVID-19 patients in the presence of either HES or saline; then, the clots obtained were used to generate electron microscope images. Results: Clot firmness at 5 minutes and the lysis index at 30 minutes were decreased in presence of HES compared with saline (Wilcoxon test, P < .01 for HES vs saline and HES vs untreated). However, no statistically significant difference was observed for all thrombin generation assay parameters studied (endogenous thrombin potential, peak thrombin, and time to peak). With HES, fibrin fibers of either COVID-19 patients or control subjects were thicker than those of saline-treated samples. Conclusion: These results highlight that HES increased apparent in vitro tPA-induced fibrinolysis in case of severe COVID-19 disease. Use of this plasma volume expander may translate as a potential help against COVID-19-induced thrombosis occurrence.
RESUMEN
Acute normoxic exercise impacts the rheological properties of red blood cells (RBC) and their senescence state; however, there is a lack of data on the effects of exercise performed in hypoxia on RBC properties. This crossover study compared the effects of acute hypoxia vs. normoxia on blood rheology, RBC senescence, and coagulation during exercise. Nine trained male cyclists completed both a session in normoxia (FiO2 = 21%) and hypoxia (FiO2 = 15.3% ≈ 2500 m). The two sessions were randomly performed, separated by one week, and consisted of an incremental and maximal exercise followed by a 20 min exercise at the first ventilatory threshold (VT1) on a home-trainer. Blood samples were taken before and after exercise to analyze hematological parameters, blood rheology (hematocrit, blood viscosity, RBC deformability and aggregation), RBC senescence markers (phosphatidylserine (PS) and CD47 exposure, intraerythrocyte reactive oxygen species (ROS), and calcium content), and blood clot viscoelastic properties. Hemoglobin oxygen saturation (SpO2) and blood lactate were also measured. In both conditions, exercise induced an increase in blood viscosity, hematocrit, intraerythrocyte calcium and ROS content, and blood lactate concentration. We also observed an increase in blood clot amplitude, and a significant drop in SpO2 during exercise in the two conditions. RBC aggregation and CD47 exposure were not modified. Exercise in hypoxia induced a slight decrease in RBC deformability which could be related to the slight increase in mean corpuscular hemoglobin concentration (MCHC). However, the values of RBC deformability and MCHC after the exercise performed in hypoxia remained in the normal range of values. In conclusion, acute hypoxia does not amplify the RBC and coagulation changes induced by an exercise bout.