Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trends Genet ; 37(12): 1060-1063, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34474931

RESUMEN

After a number of years of research in the field of miRNA, the robustness and biological relevance of many published articles is increasingly being questioned. We propose the use of new RNA-seq approaches, genome editing technologies, and updated public databases to improve the quality, reliability, and relevance of published data.


Asunto(s)
MicroARNs , Sistemas CRISPR-Cas , Edición Génica , MicroARNs/genética , Reproducibilidad de los Resultados
2.
PLoS Pathog ; 16(10): e1008660, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33075093

RESUMEN

Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication.


Asunto(s)
Neoplasias Mamarias Animales/metabolismo , Viroterapia Oncolítica/métodos , Factores de Transcripción/metabolismo , Transcriptoma , Virus Vaccinia/genética , Vaccinia/metabolismo , Replicación Viral , Animales , Biología Computacional , Perros , Femenino , Neoplasias Mamarias Animales/genética , Neoplasias Mamarias Animales/terapia , Neoplasias Mamarias Animales/virología , Análisis de la Célula Individual , Factores de Transcripción/genética , Vaccinia/genética , Vaccinia/virología
3.
Am J Respir Crit Care Med ; 200(2): 184-198, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30964696

RESUMEN

Rationale: Given the paucity of effective treatments for idiopathic pulmonary fibrosis (IPF), new insights into the deleterious mechanisms controlling lung fibroblast activation, the key cell type driving the fibrogenic process, are essential to develop new therapeutic strategies. TGF-ß (transforming growth factor-ß) is the main profibrotic factor, but its inhibition is associated with severe side effects because of its pleiotropic role. Objectives: To determine if downstream noncoding effectors of TGF-ß in fibroblasts may represent new effective therapeutic targets whose modulation may be well tolerated. Methods: We investigated the whole noncoding fraction of TGF-ß-stimulated lung fibroblast transcriptome to identify new genomic determinants of lung fibroblast differentiation into myofibroblasts. Differential expression of the long noncoding RNA (lncRNA) DNM3OS (dynamin 3 opposite strand) and its associated microRNAs (miRNAs) was validated in a murine model of pulmonary fibrosis and in IPF tissue samples. Distinct and complementary antisense oligonucleotide-based strategies aiming at interfering with DNM3OS were used to elucidate the role of DNM3OS and its associated miRNAs in IPF pathogenesis. Measurements and Main Results: We identified DNM3OS as a fibroblast-specific critical downstream effector of TGF-ß-induced lung myofibroblast activation. Mechanistically, DNM3OS regulates this process in trans by giving rise to three distinct profibrotic mature miRNAs (i.e., miR-199a-5p/3p and miR-214-3p), which influence SMAD and non-SMAD components of TGF-ß signaling in a multifaceted way. In vivo, we showed that interfering with DNM3OS function not only prevents lung fibrosis but also improves established pulmonary fibrosis. Conclusions: Pharmacological approaches aiming at interfering with the lncRNA DNM3OS may represent new effective therapeutic strategies in IPF.


Asunto(s)
Fibroblastos/metabolismo , Fibrosis Pulmonar Idiopática/genética , ARN Largo no Codificante/genética , Factor de Crecimiento Transformador beta/metabolismo , Animales , Caveolina 1/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Ratones , MicroARNs/metabolismo , Miofibroblastos/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Vía de Señalización Wnt
4.
J Biol Chem ; 292(30): 12483-12495, 2017 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-28596382

RESUMEN

Keratinocyte-derived cutaneous squamous cell carcinoma (cSCC) is the most common metastatic skin cancer. Although some of the early events involved in this pathology have been identified, the subsequent steps leading to tumor development are poorly defined. We demonstrate here that the development of mouse tumors induced by the concomitant application of a carcinogen and a tumor promoter (7,12-dimethylbenz[a]anthracene (DMBA) and 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively) is associated with the up-regulation of a previously uncharacterized long noncoding RNA (lncRNA), termed AK144841. We found that AK144841 expression was absent from normal skin and was specifically stimulated in tumors and highly tumorigenic cells. We also found that AK144841 exists in two variants, one consisting of a large 2-kb transcript composed of four exons and one consisting of a 1.8-kb transcript lacking the second exon. Gain- and loss-of-function studies indicated that AK144841 mainly inhibited gene expression, specifically down-regulating the expression of genes of the late cornified envelope-1 (Lce1) family involved in epidermal terminal differentiation and of anticancer genes such as Cgref1, Brsk1, Basp1, Dusp5, Btg2, Anpep, Dhrs9, Stfa2, Tpm1, SerpinB2, Cpa4, Crct1, Cryab, Il24, Csf2, and Rgs16 Interestingly, the lack of the second exon significantly decreased AK144841's inhibitory effect on gene expression. We also noted that high AK144841 expression correlated with a low expression of the aforementioned genes and with the tumorigenic potential of cell lines. These findings suggest that AK144841 could contribute to the dedifferentiation program of tumor-forming keratinocytes and to molecular cascades leading to tumor development.


Asunto(s)
Carcinoma de Células Escamosas/genética , Diferenciación Celular/genética , Regulación hacia Abajo/genética , ARN Largo no Codificante/genética , Neoplasias Cutáneas/genética , Animales , Carcinoma de Células Escamosas/patología , Femenino , Ratones , Ratones Endogámicos , Neoplasias Cutáneas/patología , Células Tumorales Cultivadas
5.
Carcinogenesis ; 35(5): 1110-20, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24374827

RESUMEN

Incidence of cutaneous squamous cell carcinomas (cSCCs) constantly increases in the Caucasian population. Developing preferentially on precancerous lesions such as actinic keratoses due to chronic sunlight exposure, cSCCs result from the malignant transformation of keratinocytes. Although a resection of the primary tumor is usually curative, a subset of aggressive cSCCs shows a high risk of recurrence and metastases. The characterization of the molecular dysfunctions involved in cSCC development should help to identify new relevant targets against these aggressive cSCCs. In that context, we have used small RNA sequencing to identify 100 microRNAs (miRNAs) whose expression was altered during chemically induced mouse skin tumorigenesis. The decreased expression of the miR-193b/365a cluster during tumor progression suggests a tumor suppressor role. Ectopic expression of these miRNAs in tumor cells indeed inhibited their proliferation, clonogenic potential and migration, which were stimulated in normal keratinocytes when these miRNAs were blocked with antisense oligonucleotides. A combination of in silico predictions and transcriptome analyses identified several target genes of interest. We validated KRAS and MAX as direct targets of miR-193b and miR-365a. Repression of these targets using siRNAs mimicked the effects of miR-193b and miR-365a, suggesting that these genes might mediate, at least in part, the tumor-suppressive action of these miRNAs.


Asunto(s)
Carcinoma de Células Escamosas/genética , MicroARNs/genética , Familia de Multigenes , Neoplasias Cutáneas/genética , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Genes ras , Humanos , Queratinocitos/metabolismo , Queratinocitos/patología , Ratones , MicroARNs/metabolismo , Estadificación de Neoplasias , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología
6.
Front Bioinform ; 4: 1340339, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38501112

RESUMEN

Single-cell CRISPR-based transcriptome screens are potent genetic tools for concomitantly assessing the expression profiles of cells targeted by a set of guides RNA (gRNA), and inferring target gene functions from the observed perturbations. However, due to various limitations, this approach lacks sensitivity in detecting weak perturbations and is essentially reliable when studying master regulators such as transcription factors. To overcome the challenge of detecting subtle gRNA induced transcriptomic perturbations and classifying the most responsive cells, we developed a new supervised autoencoder neural network method. Our Sparse supervised autoencoder (SSAE) neural network provides selection of both relevant features (genes) and actual perturbed cells. We applied this method on an in-house single-cell CRISPR-interference-based (CRISPRi) transcriptome screening (CROP-Seq) focusing on a subset of long non-coding RNAs (lncRNAs) regulated by hypoxia, a condition that promote tumor aggressiveness and drug resistance, in the context of lung adenocarcinoma (LUAD). The CROP-seq library of validated gRNA against a subset of lncRNAs and, as positive controls, HIF1A and HIF2A, the 2 main transcription factors of the hypoxic response, was transduced in A549 LUAD cells cultured in normoxia or exposed to hypoxic conditions during 3, 6 or 24 h. We first validated the SSAE approach on HIF1A and HIF2 by confirming the specific effect of their knock-down during the temporal switch of the hypoxic response. Next, the SSAE method was able to detect stable short hypoxia-dependent transcriptomic signatures induced by the knock-down of some lncRNAs candidates, outperforming previously published machine learning approaches. This proof of concept demonstrates the relevance of the SSAE approach for deciphering weak perturbations in single-cell transcriptomic data readout as part of CRISPR-based screening.

7.
Sci Rep ; 13(1): 14006, 2023 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-37635193

RESUMEN

The epidermis is mostly composed of keratinocytes and forms a protecting barrier against external aggressions and dehydration. Epidermal homeostasis is maintained by a fine-tuned balance between keratinocyte proliferation and differentiation. In the regulation of this process, the keratinocyte-specific miR-203 microRNA is of the outmost importance as it promotes differentiation, notably by directly targeting and down-regulating mRNA expression of genes involved in keratinocyte proliferation, such as ΔNp63, Skp2 and Msi2. We aimed at identifying new miR-203 targets involved in the regulation of keratinocyte proliferation/differentiation balance. To this end, a transcriptome analysis of human primary keratinocytes overexpressing miR-203 was performed and revealed that miR-203 overexpression inhibited functions like proliferation, mitosis and cell cycling, and activated differentiation, apoptosis and cell death. Among the down-regulated genes, 24 putative target mRNAs were identified and 8 of them were related to proliferation. We demonstrated that SRC and RAPGEF1 were direct targets of miR-203. Moreover, both were down-regulated during epidermal morphogenesis in a 3D reconstructed skin model, while miR-203 was up-regulated. Finally silencing experiments showed that SRC or RAPGEF1 contributed to keratinocyte proliferation and regulated their differentiation. Preliminary results suggest their involvement in skin carcinoma hyperproliferation. Altogether this data indicates that RAPGEF1 and SRC could be new mediators of miR-203 in epidermal homeostasis regulation.


Asunto(s)
Epidermis , Factor 2 Liberador de Guanina Nucleótido , MicroARNs , Proteínas Proto-Oncogénicas pp60(c-src) , Humanos , Homeostasis/genética , Queratinocitos , MicroARNs/genética , Mitosis , Piel , Proteínas Proto-Oncogénicas pp60(c-src)/genética , Factor 2 Liberador de Guanina Nucleótido/genética
8.
Cancers (Basel) ; 15(12)2023 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-37370689

RESUMEN

Overactivation of the mitogen-activated protein kinase (MAPK) pathway is a critical driver of many human cancers. However, therapies directly targeting this pathway lead to cancer drug resistance. Resistance has been linked to compensatory RAS overexpression, but the mechanisms underlying this response remain unclear. Here, we find that MEK inhibitors (MEKi) are associated with an increased translation of the KRAS and NRAS oncogenes through a mechanism involving dissolution of processing body (P-body) biocondensates. This effect is seen across different cell types and is extremely dynamic since removal of MEKi and ERK reactivation result in reappearance of P-bodies and reduced RAS-dependent signaling. Moreover, we find that P-body scaffold protein levels negatively impact RAS expression. Overall, we describe a new feedback loop mechanism involving biocondensates such as P-bodies in the translational regulation of RAS proteins and MAPK signaling.

9.
FASEB J ; 25(9): 3092-105, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21676945

RESUMEN

The mechanisms that regulate keratinocyte migration and proliferation in wound healing remain largely unraveled, notably regarding possible involvements of microRNAs (miRNAs). Here we disclose up-regulation of miR-483-3p in 2 distinct models of wound healing: scratch-injured cultures of human keratinocytes and wounded skin in mice. miR-483-3p accumulation peaks at the final stage of the wound closure process, consistent with a role in the arrest of "healing" progression. Using an in vitro wound-healing model, videomicroscopy, and 5-bromo-2'-uridine incorporation, we observed that overexpression of miR-483-3p inhibits keratinocyte migration and proliferation, whereas delivery of anti-miR-483-3p oligonucleotides sustains keratinocyte proliferation beyond the closure of the wound, compared with irrelevant anti-miR treatment. Expression profiling of keratinocytes transfected with miR-483-3p identified 39 transcripts that were both predicted targets of miR-483-3p and down-regulated after miR-483-3p overexpression. Luciferase reporter assays, Western blot analyses, and silencing by specific siRNAs finally established that kinase MK2, cell proliferation marker MKI67, and transcription factor YAP1 are direct targets of miR-483-3p that control keratinocyte proliferation. miR-483-3p-mediated down-regulation of MK2, MKI67, and YAP1 thus represents a novel mechanism controlling keratinocyte growth arrest at the final steps of reepithelialization.


Asunto(s)
Proliferación Celular , Queratinocitos/metabolismo , MicroARNs/metabolismo , Heridas y Lesiones/metabolismo , Animales , Anticuerpos , Células Epiteliales , Silenciador del Gen , Humanos , Queratinocitos/citología , Ratones , MicroARNs/genética , Oligonucleótidos , Piel/metabolismo , Factores de Tiempo
10.
Biomed Pharmacother ; 150: 112930, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35427821

RESUMEN

Dupuytren disease (DD) is a hand-localized fibrotic disorder characterized by a scar-like, collagen-rich cord. Treatment usually comprises surgical removal of the cord, but is associated with a high relapse rate, in some cases requiring finger amputation. There is currently no consensual medical approach for treating DD. Numerous preclinical studies have highlighted antifibrotic properties of metformin, and the aim of this study was to assess a potential antifibrotic role of metformin in DD. Fibroblasts from DD cords (DF) and phenotypically normal palmar fascia (PF) were extracted from surgical specimens and cultured. The fibrotic status of DF and PF was compared at baseline, and under profibrotic (TGF-ß stimulation) and antifibrotic (metformin stimulation) conditions, using quantitative RT-PCR, western blot, immunocytochemistry, and a functional fibroblast contraction assay. At baseline, DF showed higher levels of fibrotic markers and contraction capacity compared with PF. Both types of fibroblasts responded to TGF-ß stimulation. Treatment of DF and PF with metformin did not affect basal levels of fibrotic markers and contraction but largely prevented their induction by TGF-ß. In conclusion, our data show that metformin inhibits TGF-ß-induced expression of fibrotic markers and contraction in hand-derived fibroblasts. This supports the case for a clinical trial to assess the repurposing of metformin as an adjuvant to surgery, to prevent, reduce, or delay recurrence in at-risk DD patients.


Asunto(s)
Contractura de Dupuytren , Metformina , Células Cultivadas , Contractura de Dupuytren/tratamiento farmacológico , Contractura de Dupuytren/metabolismo , Fibroblastos/metabolismo , Fibrosis , Humanos , Metformina/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Recurrencia Local de Neoplasia/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
11.
J Invest Dermatol ; 141(10): 2369-2379, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33831432

RESUMEN

NK cells and tissue-resident innate lymphoid cells (ILCs) are innate effectors found in the skin. To investigate their temporal dynamics and specific functions throughout the development of cutaneous squamous cell carcinoma (cSCC), we combined transcriptomic and immunophenotyping analyses in mouse and human cSCCs. We identified an infiltration of NK cells and ILC1s as well as the presence of a few ILC3s. Adoptive transfer of NK cells in NK cell‒ and ILC-deficient Nfil3-/- mice revealed a role for NK cells in early control of cSCC. During tumor progression, we identified a population skewing with the infiltration of atypical ILC1 secreting inflammatory cytokines but reduced levels of IFN-γ at the papilloma stage. NK cells and ILC1s were functionally impaired, with reduced cytotoxicity and IFN-γ secretion associated with the downregulation of activating receptors. They also showed a high degree of heterogeneity in mouse and human cSCCs with the expression of several markers of exhaustion, including TIGIT on NK cells and PD-1 and TIM-3 on ILC1s. Our data show an enrichment in inflammatory ILC1 at the precancerous stage together with impaired antitumor functions in NK cells and ILC1 that could contribute to the development of cSCC and thus suggest that future immunotherapies should take both ILC populations into account.


Asunto(s)
Carcinoma de Células Escamosas/inmunología , Células Asesinas Naturales/fisiología , Linfocitos/fisiología , Neoplasias Cutáneas/inmunología , Traslado Adoptivo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Carcinoma de Células Escamosas/etiología , Carcinoma de Células Escamosas/patología , Humanos , Inmunidad Innata , Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Ratones , Receptor 1 Gatillante de la Citotoxidad Natural/análisis , Estadificación de Neoplasias , Neoplasias Cutáneas/etiología , Neoplasias Cutáneas/patología
12.
Oncogene ; 40(14): 2621, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686243

RESUMEN

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, Nuclear LUCAT1 (NLUCAT1), which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.

13.
Cancers (Basel) ; 12(7)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664318

RESUMEN

Cutaneous squamous cell carcinoma (cSCC) development has been linked to immune dysfunctions but the mechanisms are still unclear. Here, we report a progressive infiltration of tumor-associated neutrophils (TANs) in precancerous and established cSCC lesions from chemically induced skin carcinogenesis. Comparative in-depth gene expression analyses identified a predominant protumor gene expression signature of TANs in lesions compared to their respective surrounding skin. In addition, in vivo depletion of neutrophils delayed tumor growth and significantly increased the frequency of proliferating IFN-γ (interferon-γ)-producing CD8+ T cells. Mechanisms that limited antitumor responses involved high arginase activity, production of reactive oxygen species (ROS) and nitrite (NO), and the expression of programmed death-ligand 1 (PD-L1) on TAN, concomitantly with an induction of PD-1 on CD8+ T cells, which correlated with tumor size. Our data highlight the relevance of targeting neutrophils and PD-L1-PD-1 (programmed death-1) interaction in the treatment of cSCC.

14.
Mol Ther Nucleic Acids ; 16: 186-193, 2019 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-30897407

RESUMEN

Tetrafunctional block copolymers are molecules capable of complexing DNA. Although ineffective in vitro, studies in mice have shown that the tetrafunctional block copolymer 704 is a more efficient lung gene transfer agent than the cationic liposome GL67A, previously used in a phase II clinical trial in cystic fibrosis patients. In the present study, we compared the gene transfer capacity of the 704-DNA formulation and a cationic liposome-DNA formulation equivalent to GL67A in a larger-animal model, the newborn piglet. Our results indicate an efficacy of the 704-DNA formulation well above one order of magnitude higher than that of the cationic liposome-DNA formulation, with no elevated levels of interleukin-6 (IL-6), taken as a marker of inflammation. Transgene expression was heterogeneous within lung lobes, with expression levels that were below the detection threshold in some samples, while high in other samples. This heterogeneity is likely to be due to the bolus injection procedure as well as to the small volume of injection. The present study highlights the potential of tetrafunctional block copolymers as non-viral vectors for lung gene therapy.

15.
Oncogene ; 38(46): 7146-7165, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31417181

RESUMEN

Lung cancer is the leading cause of cancer death worldwide, with poor prognosis and a high rate of recurrence despite early surgical removal. Hypoxic regions within tumors represent sources of aggressiveness and resistance to therapy. Although long non-coding RNAs (lncRNAs) are increasingly recognized as major gene expression regulators, their regulation and function following hypoxic stress are still largely unexplored. Combining profiling studies on early-stage lung adenocarcinoma (LUAD) biopsies and on A549 LUAD cell lines cultured in normoxic or hypoxic conditions, we identified a subset of lncRNAs that are both correlated with the hypoxic status of tumors and regulated by hypoxia in vitro. We focused on a new transcript, NLUCAT1, which is strongly upregulated by hypoxia in vitro and correlated with hypoxic markers and poor prognosis in LUADs. Full molecular characterization showed that NLUCAT1 is a large nuclear transcript composed of six exons and mainly regulated by NF-κB and NRF2 transcription factors. CRISPR-Cas9-mediated invalidation of NLUCAT1 revealed a decrease in proliferative and invasive properties, an increase in oxidative stress and a higher sensitivity to cisplatin-induced apoptosis. Transcriptome analysis of NLUCAT1-deficient cells showed repressed genes within the antioxidant and/or cisplatin-response networks. We demonstrated that the concomitant knockdown of four of these genes products, GPX2, GLRX, ALDH3A1, and PDK4, significantly increased ROS-dependent caspase activation, thus partially mimicking the consequences of NLUCAT1 inactivation in LUAD cells. Overall, we demonstrate that NLUCAT1 contributes to an aggressive phenotype in early-stage hypoxic tumors, suggesting it may represent a new potential therapeutic target in LUADs.


Asunto(s)
Adenocarcinoma del Pulmón/patología , Neoplasias Pulmonares/patología , Estrés Oxidativo/fisiología , ARN Largo no Codificante/fisiología , Adenocarcinoma del Pulmón/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Humanos , Neoplasias Pulmonares/metabolismo , Fenotipo
16.
Int J Cancer ; 123(2): 365-371, 2008 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-18404672

RESUMEN

Potassium channels, the most diverse superfamily of ion channels, have recently emerged as regulators of carcinogenesis, thus introducing possible new therapeutic strategies in the fight against cancer. In particular, the large conductance Ca(2+)-activated K(+) channels, often referred to as BK channels, are at the crossroads of several tumor-associated processes such as cell proliferation, survival, secretion and migration. Despite the high BK channel expression in osteosarcoma (OS), their function has not yet been investigated in this malignant bone pathology. Here, using stable RNA interference to reduce the expression of hSlo, the human pore-forming alpha-subunit of the BK channel, in human Cal72 OS cells, we show that BK channels play a functional role in carcinogenesis. Our results reveal for the first time that BK channels exhibit antitumoral properties in OS in vivo and affect the tumor microenvironment through the modulation of both chemokine expression and leukocyte infiltration.


Asunto(s)
Neoplasias Óseas/metabolismo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Osteosarcoma/metabolismo , Northern Blotting , Línea Celular Tumoral , Ensayo de Inmunoadsorción Enzimática , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica , Humanos , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Plásmidos , Reacción en Cadena de la Polimerasa , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
17.
Int Rev Cell Mol Biol ; 333: 91-158, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28729029

RESUMEN

In mammalian cells, hypoxia, or inadequate oxygen availability, regulates the expression of a specific set of MicroRNAs (MiRNAs), termed "hypoxamiRs." Over the past 10 years, the appreciation of the importance of hypoxamiRs in regulating the cellular adaptation to hypoxia has grown dramatically. At the cellular level, each hypoxamiR, including the master hypoxamiR MiR-210, can simultaneously regulate expression of multiple target genes in order to fine-tune the adaptive response of cells to hypoxia. This review addresses the complex molecular regulation of MiRNAs in both physiological and pathological conditions of low oxygen adaptation and the multiple functions of hypoxamiRs in various hypoxia-associated biological processes, including apoptosis, survival, proliferation, angiogenesis, inflammation, and metabolism. From a clinical perspective, we also discuss the potential use of hypoxamiRs as new biomarkers and/or therapeutic targets in cancer and aging-associated diseases including cardiovascular and fibroproliferative disorders.


Asunto(s)
Regulación de la Expresión Génica , Hipoxia/metabolismo , MicroARNs/metabolismo , Transducción de Señal , Animales , Humanos , Hipoxia/genética
18.
EMBO Mol Med ; 8(8): 919-36, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27250636

RESUMEN

Although excessive exposure to UV is widely recognized as a major factor leading to skin perturbations and cancer, the complex mechanisms underlying inflammatory skin disorders resulting from UV exposure remain incompletely characterized. The nuclear hormone receptor PPARß/δ is known to control mouse cutaneous repair and UV-induced skin cancer development. Here, we describe a novel PPARß/δ-dependent molecular cascade involving TGFß1 and miR-21-3p, which is activated in the epidermis in response to UV exposure. We establish that the passenger miRNA miR-21-3p, that we identify as a novel UV-induced miRNA in the epidermis, plays a pro-inflammatory function in keratinocytes and that its high level of expression in human skin is associated with psoriasis and squamous cell carcinomas. Finally, we provide evidence that inhibition of miR-21-3p reduces UV-induced cutaneous inflammation in ex vivo human skin biopsies, thereby underlining the clinical relevance of miRNA-based topical therapies for cutaneous disorders.


Asunto(s)
MicroARNs/metabolismo , PPAR delta/metabolismo , PPAR-beta/metabolismo , Radiodermatitis/patología , Transducción de Señal , Piel/efectos de la radiación , Rayos Ultravioleta , Animales , Humanos , Ratones
19.
FASEB J ; 17(12): 1751-3, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12958198

RESUMEN

Bone resorption is regulated by the immune system, where receptor activator of nuclear factor (NF)kappaB ligand (RANKL), a new member of the tumor-necrosis factor family, may contribute to pathological conditions. Due to the role of RANKL in the maturation of monocyte-derived osteoclasts, we hypothesized that RANKL could exert chemotactic properties toward monocytic cells. Our results demonstrate that RANKL induces the migration of MonoMac-6 monocytic cells as well as human freshly isolated total peripheral blood mononuclear cells (PBMC) and CD14+ purified PBMC. RANKL induces the migration of MonoMac-6 cells in a dose-dependent manner and with an efficacy similar to MCP-1. After an 8-h incubation, the soluble form of RANKL (sRANKL) started to exhibit a chemoattractive effect on MonoMac-6 cells, with an increased effect observed up to 24 h. RANKL elicits an additive chemotactic effect to MCP-1. Furthermore, addition of the RANKL decoy receptor osteoprotegerin in the lower well or RANKL in the upper well abrogates the RANKL-induced migration of MonoMac-6 cells, hallmarking a true specific activity. RNase protection assay experiments indicate that exposure of MonoMac-6 cells to RANKL had no significant effect on the expression of a variety of chemokines, known to attract monocytes. This study provides evidence that RANKL behaves as a chemotactic factor for monocytic cells, emphazing the cross-talk between bone and immune systems.


Asunto(s)
Proteínas Portadoras/farmacología , Factores Quimiotácticos/farmacología , Glicoproteínas de Membrana/farmacología , Monocitos/inmunología , Línea Celular , Quimiocina CCL2/farmacología , Quimiotaxis/efectos de los fármacos , Sinergismo Farmacológico , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/inmunología , Modelos Inmunológicos , Monocitos/efectos de los fármacos , Ligando RANK , Receptor Activador del Factor Nuclear kappa-B
20.
J Bone Miner Res ; 17(5): 869-78, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12009018

RESUMEN

Prostaglandins (PGs) are important mediators of bone response to growth factors, hormones, inflammation, or mechanical strains. In this study, we show that in MG63 osteosarcoma cells, prostaglandin E2 (PGE2) produces the opening of a large conductance Ca2+-dependent K+ channel (BK). This PGE2-mediated channel opening induces the recruitment of various tyrosine-phosphorylated proteins on the hSlo alpha-subunit of BK. Because the C-terminal domain of hSlo encompasses an immunoreceptor tyrosine-based activation motif (ITAM), we show that the Syk nonreceptor tyrosine kinase, reported yet to be expressed mainly in hematopoietic cells, is expressed also in osteoblastic cells, and recruited on this ITAM after a PGE2-induced docking/activation process. We show that Syk/hSlo association is dependent of an upstream Src-related tyrosine kinase activity, in accord with the classical two-step model described for immune receptors. Finally, we provide evidence that this Syk/hSlo interaction does not affect the electrical features of BK channels in osteosarcoma cells. With these data, we would like to suggest the new notion that besides its conductance function, hSlo channel can behave in bone cells, as a true transduction protein intervening in the bone remodeling induced by PGE2.


Asunto(s)
Dinoprostona/farmacología , Precursores Enzimáticos/metabolismo , Canales de Potasio Calcio-Activados/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencia de Aminoácidos , Animales , Remodelación Ósea/efectos de los fármacos , Remodelación Ósea/fisiología , Células COS , Activación Enzimática , Humanos , Péptidos y Proteínas de Señalización Intracelular , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio , Canales de Potasio de Gran Conductancia Activados por el Calcio , Datos de Secuencia Molecular , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteosarcoma/metabolismo , Técnicas de Placa-Clamp , Canales de Potasio Calcio-Activados/química , Canales de Potasio Calcio-Activados/genética , Transducción de Señal , Quinasa Syk , Células Tumorales Cultivadas , Familia-src Quinasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA