Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 111(16): 5896-901, 2014 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-24711398

RESUMEN

Directed migration of diverse cell types plays a critical role in biological processes ranging from development and morphogenesis to immune response, wound healing, and regeneration. However, techniques to direct, manipulate, and study cell migration in vitro and in vivo in a specific and facile manner are currently limited. We conceived of a strategy to achieve direct control over cell migration to arbitrary user-defined locations, independent of native chemotaxis receptors. Here, we show that genetic modification of cells with an engineered G protein-coupled receptor allows us to redirect their migration to a bioinert drug-like small molecule, clozapine-N-oxide (CNO). The engineered receptor and small-molecule ligand form an orthogonal pair: The receptor does not respond to native ligands, and the inert drug does not bind to native cells. CNO-responsive migration can be engineered into a variety of cell types, including neutrophils, T lymphocytes, keratinocytes, and endothelial cells. The engineered cells migrate up a gradient of the drug CNO and transmigrate through endothelial monolayers. Finally, we demonstrate that T lymphocytes modified with the engineered receptor can specifically migrate in vivo to CNO-releasing beads implanted in a live mouse. This technology provides a generalizable genetic tool to systematically perturb and control cell migration both in vitro and in vivo. In the future, this type of migration control could be a valuable module for engineering therapeutic cellular devices.


Asunto(s)
Quimiotaxis , Ingeniería Genética , Mamíferos/metabolismo , Transducción de Señal , Administración Intravenosa , Animales , Polaridad Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Clozapina/análogos & derivados , Clozapina/farmacología , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Células HL-60 , Humanos , Ratones , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/citología , Linfocitos T/efectos de los fármacos , Linfocitos T/metabolismo , Migración Transendotelial y Transepitelial/efectos de los fármacos
2.
Nat Struct Mol Biol ; 13(4): 360-4, 2006 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-16532007

RESUMEN

DNA-damage recognition in the nucleotide excision repair (NER) cascade is a complex process, operating on a wide variety of damages. UvrB is the central component in prokaryotic NER, directly involved in DNA-damage recognition and guiding the DNA through repair synthesis. We report the first structure of a UvrB-double-stranded DNA complex, providing insights into the mechanism by which UvrB binds DNA, leading to formation of the preincision complex. One DNA strand, containing a 3' overhang, threads behind a beta-hairpin motif of UvrB, indicating that this motif inserts between the strands of the double helix, thereby locking down either the damaged or undamaged strand. The nucleotide directly behind the beta-hairpin is flipped out and inserted into a small, highly conserved pocket in UvrB.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Reparación del ADN , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Bacillus/genética , Bacillus/metabolismo , Secuencia de Bases , Cristalografía por Rayos X , Daño del ADN , ADN Bacteriano/genética , Sustancias Macromoleculares , Modelos Moleculares , Electricidad Estática
3.
EMBO J ; 26(2): 613-22, 2007 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-17245438

RESUMEN

Removal and repair of DNA damage by the nucleotide excision repair pathway requires two sequential incision reactions, which are achieved by the endonuclease UvrC in eubacteria. Here, we describe the crystal structure of the C-terminal half of UvrC, which contains the catalytic domain responsible for 5' incision and a helix-hairpin-helix-domain that is implicated in DNA binding. Surprisingly, the 5' catalytic domain shares structural homology with RNase H despite the lack of sequence homology and contains an uncommon DDH triad. The structure also reveals two highly conserved patches on the surface of the protein, which are not related to the active site. Mutations of residues in one of these patches led to the inability of the enzyme to bind DNA and severely compromised both incision reactions. Based on our results, we suggest a model of how UvrC forms a productive protein-DNA complex to excise the damage from DNA.


Asunto(s)
Dominio Catalítico , Endodesoxirribonucleasas/química , Secuencias de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Endodesoxirribonucleasas/metabolismo , Magnesio/metabolismo , Manganeso/metabolismo , Modelos Moleculares , Estructura Terciaria de Proteína , Thermotoga maritima/enzimología
4.
EMBO J ; 24(5): 885-94, 2005 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-15692561

RESUMEN

Nucleotide excision repair is a highly conserved DNA repair mechanism present in all kingdoms of life. The incision reaction is a critical step for damage removal and is accomplished by the UvrC protein in eubacteria. No structural information is so far available for the 3' incision reaction. Here we report the crystal structure of the N-terminal catalytic domain of UvrC at 1.5 A resolution, which catalyzes the 3' incision reaction and shares homology with the catalytic domain of the GIY-YIG family of intron-encoded homing endonucleases. The structure reveals a patch of highly conserved residues surrounding a catalytic magnesium-water cluster, suggesting that the metal binding site is an essential feature of UvrC and all GIY-YIG endonuclease domains. Structural and biochemical data strongly suggest that the N-terminal endonuclease domain of UvrC utilizes a novel one-metal mechanism to cleave the phosphodiester bond.


Asunto(s)
Reparación del ADN/fisiología , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Secuencia de Aminoácidos , Bacillus/enzimología , Bacillus/genética , Dominio Catalítico/genética , Cationes Bivalentes/metabolismo , Secuencia Conservada , Cristalografía por Rayos X , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Endodesoxirribonucleasas/genética , Proteínas de Escherichia coli , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Electricidad Estática
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA