Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Mitochondrion ; 7(3): 177-94, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17320492

RESUMEN

Plant cells must react to a variety of adverse environmental conditions that they may experience on a regular basis. Part of this response centers around (1) ROS as damaging molecules and signaling molecules; (2) redox status, which can be influenced by ROS production; and (3) availability of metabolites. All of these are also likely to interface with changes in hormone levels [Desikan, R., Hancock, J., Neill, S., 2005. Reactive oxygen species as signalling molecules. In: Smirnoff, N. (ed.), Antioxidants and reactive oxygen species in plants. Blackwell Pub. Ltd., Oxford, pp. 169-196; Kwak, J.M., Nguyen, V., Schroeder, J.I., 2006. The role of reactive oxygen species in hormonal responses. Plant Physiol. 141, 323-329]. Each of these areas can be strongly influenced by changes in mitochondrial function. Such changes trigger altered nuclear gene expression by a poorly understood process of mitochondrial retrograde regulation (MRR), which is likely composed of several distinct signaling pathways. Much of what is known about plant MRR centers around the response to a dysfunctional mtETC and subsequent induction of genes encoding proteins involved in recovery of mitochondrial functions, such as AOX and alternative NAD(P)H dehydrogenases, and genes encoding enzymes aimed at regaining ROS level/redox homeostasis, such as glutathione transferases, catalases, ascorbate peroxidases and superoxide dismutases. However, as evidence of new and interesting targets of MRR emerge, this picture is likely to change and the complexity and importance of MRR in plant responses to stresses and the decision for cells to either recover or switch into programmed cell death mode is likely to become more apparent.


Asunto(s)
Mitocondrias/fisiología , Fenómenos Fisiológicos de las Plantas , Muerte Celular , Núcleo Celular/fisiología , Daño del ADN , Homeostasis , Calor , Oxidación-Reducción , Células Vegetales , Reguladores del Crecimiento de las Plantas/fisiología , Especies Reactivas de Oxígeno/metabolismo
3.
PLoS One ; 7(9): e44339, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23028523

RESUMEN

Plant mitochondria signal to the nucleus leading to altered transcription of nuclear genes by a process called mitochondrial retrograde regulation (MRR). MRR is implicated in metabolic homeostasis and responses to stress conditions. Mitochondrial reactive oxygen species (mtROS) are a MRR signaling component, but whether all MRR requires ROS is not established. Inhibition of the cytochrome respiratory pathway by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA), each of which initiates MRR, can increase ROS production in some plant cells. We found that for AA and MFA applied to leaves of soil-grown Arabidopsis thaliana plants, ROS production increased with AA, but not with MFA, allowing comparison of transcript profiles under different ROS conditions during MRR. Variation in transcript accumulation over time for eight nuclear encoded mitochondrial protein genes suggested operation of both common and distinct signaling pathways between the two treatments. Consequences of mitochondrial perturbations for the whole transcriptome were examined by microarray analyses. Expression of 1316 and 606 genes was altered by AA and MFA, respectively. A subset of genes was similarly affected by both treatments, including genes encoding photosynthesis-related proteins. MFA treatment resulted in more down-regulation. Functional gene category (MapMan) and cluster analyses showed that genes with expression levels affected by perturbation from AA or MFA inhibition were most similarly affected by biotic stresses such as pathogens. Overall, the data provide further evidence for the presence of mtROS-independent MRR signaling, and support the proposed involvement of MRR and mitochondrial function in plant responses to biotic stress.


Asunto(s)
Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Ciclo del Ácido Cítrico/efectos de los fármacos , Transporte de Electrón/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Antimicina A/farmacología , Arabidopsis/metabolismo , Fluoroacetatos/farmacología , Análisis de Secuencia por Matrices de Oligonucleótidos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo
4.
J Biol Chem ; 281(23): 15625-35, 2006 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-16606624

RESUMEN

In many organisms, an increasing number of proteins seem to play two or more unrelated roles. Here we report that maize sucrose synthase (SUS) is distributed in organelles not involved in sucrose metabolism and may have novel roles beyond sucrose degradation. Bioinformatics analysis predicts that among the three maize SUS isoforms, SH1 protein has a putative mitochondrial targeting peptide (mTP). We validated this prediction by the immunodetection of SUS in mitochondria. Analysis with isoform-specific antisera revealed that both SH1 and SUS1 are represented in mitochondria, although the latter lacks a canonical mTP. The SUS2 isoform is not detectable in mitochondria, despite its presence in the cytosol. In maize primary roots, the mitochondrion-associated SUS (mtSUS; which includes SH1 and SUS1) is present mostly in the root tip, indicating tissue-specific regulation of SUS compartmentation. Unlike the glycolytic enzymes that occur attached to the outside of mitochondria, SH1 and SUS1 are intramitochondrial. The low abundance of SUS in mitochondria, its high Km value for sucrose, and the lack of sucrose in mitochondria suggest that mtSUS plays a non-sucrolytic role. Co-immunoprecipitation studies indicate that SUS interacts with the voltage-dependent anion channel in an isoform-specific and anoxia-enhanced manner and may be involved in the regulation of solute fluxes into and out of mitochondria. In several plant species, at least one of the SUS proteins possesses a putative mTP, indicating the conservation of the noncatalytic function across plant species. Taken together, these observations suggest that SUS has a novel noncatalytic function in plant cells.


Asunto(s)
Glucosiltransferasas/metabolismo , Mitocondrias/enzimología , Transducción de Señal , Zea mays/enzimología , Secuencia de Aminoácidos , Biología Computacional , Sueros Inmunes , Inmunoprecipitación , Datos de Secuencia Molecular , Fracciones Subcelulares/enzimología
5.
Plant Mol Biol ; 57(6): 871-88, 2005 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-15952071

RESUMEN

Perturbation of mitochondrial function causes altered nuclear gene expression in plants. To study this response, called mitochondrial retrograde regulation, and developmental gene expression, a transgenic Arabidopsis thaliana (Col-0) line containing a firefly luciferase gene controlled by a promoter region of the Arabidopsis alternative oxidase 1a gene (AtAOX1a) was created. The transgene and the endogenous gene were developmentally induced in young cotyledons to a level higher than in older cotyledons and leaves. Analysis of transgene expression suggests that this is true for emerging leaves as well. Antimycin A (AA), a mitochondrial electron transport chain inhibitor, and monofluroacetate (MFA), a TCA cycle inhibitor, induced expression of the transgene and the endogenous gene in parallel. The following comparative responses of the transgene to inhibitors were observed: (a) the response in cotyledons to AA treatment differed greatly in magnitude from the response in leaves; (b) the induction kinetics in cotyledons following MFA treatment differed greatly from the kinetics in leaves; and (c) the induction kinetics following MFA treatment differed from the kinetics of AA in both leaves and cotyledons. The transgenic line was used in a genetic screen to isolate mutants with greatly decreased transgene and AtAOX1a induction in response to AA. Some of these mutant lines showed greatly decreased induction by MFA, but one did not. Taken altogether, the data provide genetic evidence that suggests that induction of the AtAOX1a gene by distinct mitochondrial perturbations are via distinct, but overlapping signaling pathways that are tissue specific.


Asunto(s)
Arabidopsis/genética , Genes Reporteros/genética , Mitocondrias/fisiología , Mutación , Oxidorreductasas/genética , Antimicina A/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/fisiología , Northern Blotting , Cotiledón/genética , Cotiledón/metabolismo , ADN Bacteriano/genética , ADN de Plantas/química , ADN de Plantas/genética , Fluoroacetatos/farmacología , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Mediciones Luminiscentes/métodos , Mitocondrias/efectos de los fármacos , Proteínas Mitocondriales , Modelos Biológicos , Datos de Secuencia Molecular , Mutagénesis Insercional , Hojas de la Planta/genética , Hojas de la Planta/metabolismo , Proteínas de Plantas , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , ARN de Planta/genética , ARN de Planta/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Semillas/efectos de los fármacos , Semillas/genética , Análisis de Secuencia de ADN , Transducción de Señal/efectos de los fármacos
6.
Plant Mol Biol ; 58(2): 159-75, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16027972

RESUMEN

Chemical inhibition of the mitochondrial electron transport chain (mtETC) by antimycin A (AA) or the TCA cycle by monofluoroacetate (MFA) causes increased expression of nucleus-encoded alternative oxidase (AOX) genes in plants. In order to better understand the mechanisms of this mitochondrial retrograde regulation (MRR) of gene expression, constructs containing deleted and mutated versions of a promoter region of the Arabidopsis thaliana AOX1a gene (AtAOX1a) controlling expression of the coding region of the enhanced firefly luciferase gene were employed to identify regions of the AtAOX1a promoter important for induction in response to mtETC or TCA cycle inhibition. Transient transformation coupled with in vitro and in vivo assays as well as plants containing transgenes with truncated promoter regions were used to identify a 93 base pair portion of the promoter, termed the MRR region, that was necessary for induction. Further mutational analyses showed that most of the 93 bp MRR region is important for both AA and MFA induction. Sub-regions within the MRR region that are especially important for strong induction by both AA or MFA were identified. Specific mutations in a W-box and Dof motifs in the MRR region indicate that these specific motifs are not important for induction. Recent evidence suggests that MRR of AOX genes following inhibition of the mtETC is via a separate signaling pathway from MRR resulting from metabolic shifts, such as those that result from MFA treatment. Our data suggest that these signaling pathways share regulatory regions in the AtAOX1a promoter. Arabidopsis proteins interacted specifically with a probe containing the MRR region, as shown by electrophoretic mobility shift assays and Southwestern blotting. These interactions were eliminated under reducing conditions.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Oxidorreductasas/genética , Regiones Promotoras Genéticas/genética , Secuencias Reguladoras de Ácidos Nucleicos/genética , Antimicina A/farmacología , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Sitios de Unión/genética , Núcleo Celular/genética , Electroforesis en Gel de Poliacrilamida , Ensayo de Cambio de Movilidad Electroforética , Fluoroacetatos/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Luciferasas/genética , Luciferasas/metabolismo , Mitocondrias/genética , Proteínas Mitocondriales , Datos de Secuencia Molecular , Mutación , Proteínas de Plantas , Plantas Modificadas Genéticamente , Unión Proteica , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Ácido Nucleico , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA