Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nature ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38925148

RESUMEN

Pre-mRNA splicing requires the assembly, remodeling, and disassembly of the multi-megadalton ribonucleoprotein complex called the spliceosome1. Recent studies have shed light on spliceosome assembly and remodeling for catalysis2-6, but the mechanism of disassembly remains unclear. Here, we report 2.6 to 3.2 Å resolution cryo-electron microscopy structures of nematode and human terminal intron-lariat spliceosomes along with biochemical and genetic data. Our results uncover how four disassembly factors and the conserved RNA helicase DHX15 initiate spliceosome disassembly. The disassembly factors probe large inner and outer spliceosome surfaces to detect the release of ligated mRNA. Two of these factors, TFIP11 and C19L1, and three general spliceosome subunits, SYF1, SYF2 and SDE2, then dock and activate DHX15 on the catalytic U6 snRNA to initiate disassembly. U6 thus controls both the start5 and end of pre-mRNA splicing. Taken together, our results explain the molecular basis of canonical spliceosome disassembly and provide a framework to understand general spliceosomal RNA helicase control and the discard of aberrant spliceosomes.

2.
Nature ; 616(7958): 828-835, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37020021

RESUMEN

Newly made mRNAs are processed and packaged into mature ribonucleoprotein complexes (mRNPs) and are recognized by the essential transcription-export complex (TREX) for nuclear export1,2. However, the mechanisms of mRNP recognition and three-dimensional mRNP organization are poorly understood3. Here we report cryo-electron microscopy and tomography structures of reconstituted and endogenous human mRNPs bound to the 2-MDa TREX complex. We show that mRNPs are recognized through multivalent interactions between the TREX subunit ALYREF and mRNP-bound exon junction complexes. Exon junction complexes can multimerize through ALYREF, which suggests a mechanism for mRNP organization. Endogenous mRNPs form compact globules that are coated by multiple TREX complexes. These results reveal how TREX may simultaneously recognize, compact and protect mRNAs to promote their packaging for nuclear export. The organization of mRNP globules provides a framework to understand how mRNP architecture facilitates mRNA biogenesis and export.


Asunto(s)
Transporte Activo de Núcleo Celular , Núcleo Celular , ARN Mensajero , Transcripción Genética , Humanos , Núcleo Celular/genética , Núcleo Celular/metabolismo , Microscopía por Crioelectrón , ARN Mensajero/biosíntesis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Exones
3.
Nature ; 547(7662): 179-184, 2017 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-28581497

RESUMEN

The adult mammalian heart is non-regenerative owing to the post-mitotic nature of cardiomyocytes. The neonatal mouse heart can regenerate, but only during the first week of life. Here we show that changes in the composition of the extracellular matrix during this week can affect cardiomyocyte growth and differentiation in mice. We identify agrin, a component of neonatal extracellular matrix, as required for the full regenerative capacity of neonatal mouse hearts. In vitro, recombinant agrin promotes the division of cardiomyocytes that are derived from mouse and human induced pluripotent stem cells through a mechanism that involves the disassembly of the dystrophin-glycoprotein complex, and Yap- and ERK-mediated signalling. In vivo, a single administration of agrin promotes cardiac regeneration in adult mice after myocardial infarction, although the degree of cardiomyocyte proliferation observed in this model suggests that there are additional therapeutic mechanisms. Together, our results uncover a new inducer of mammalian heart regeneration and highlight fundamental roles of the extracellular matrix in cardiac repair.


Asunto(s)
Agrina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Corazón/fisiología , Regeneración , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular , Proliferación Celular , Distroglicanos/metabolismo , Femenino , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas Señalizadoras YAP
4.
Nat Struct Mol Biol ; 31(5): 747-751, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38467876

RESUMEN

Pre-mRNA splicing by the spliceosome requires the biogenesis and recycling of its small nuclear ribonucleoprotein (snRNP) complexes, which are consumed in each round of splicing. The human U5 snRNP is the ~1 MDa 'heart' of the spliceosome and is recycled through an unknown mechanism involving major architectural rearrangements and the dedicated chaperones CD2BP2 and TSSC4. Late steps in U5 snRNP biogenesis similarly involve these chaperones. Here we report cryo-electron microscopy structures of four human U5 snRNP-CD2BP2-TSSC4 complexes, revealing how a series of molecular events primes the U5 snRNP to generate the ~2 MDa U4/U6.U5 tri-snRNP, the largest building block of the spliceosome.


Asunto(s)
Microscopía por Crioelectrón , Modelos Moleculares , Ribonucleoproteína Nuclear Pequeña U5 , Empalmosomas , Humanos , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/genética , Empalmosomas/metabolismo , Empalmosomas/química , Empalmosomas/ultraestructura , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/química , Conformación Proteica , Empalme del ARN , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA