Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
J Biomed Sci ; 23: 6, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26786850

RESUMEN

BACKGROUND: Developing brain is a major target for alcohol's actions and neurological/functional abnormalities include microencephaly, reduced frontal cortex, mental retardation and attention-deficits. Previous studies have shown that ethanol altered the lateral ventricular neuroepithelial cell proliferation. However, the effect of ethanol on subventricular basal progenitors which generate majority of the cortical layers is not known. METHODS: We utilized spontaneously immortalized rat brain neuroblasts obtained from cultures of 18-day-old fetal rat cerebral cortices using in vitro ethanol exposures and an in utero binge model. In the in vitro acute model, cells were exposed to 86 mM ethanol for 8, 12 and 24 h. The second in vitro model comprised of chronic intermittent ethanol (CIE) exposure which consisted of 14 h of ethanol treatment followed by 10 h of withdrawal with three repetitions. RESULTS: E18 neuroblasts expressing Tbr2 representing immature basal progenitors displayed significant reduction of proliferation in response to ethanol in both the models. The decreased proliferation was accompanied by absence of apoptosis or autophagy as illustrated by FACS analysis and expression of apoptotic and autophagic markers. The BrdU incorporation assay indicated that ethanol enhanced the accumulation of cells at G1 with reduced cell number in S phase. In addition, the ethanol-inhibited basal neuroblasts proliferation was connected to decrease in cyclin D1 and Rb phosphorylation indicating cell cycle arrest. Further, in utero ethanol exposure in pregnant rats during E15-E18 significantly decreased Tbr2 and cyclin D1 positive cell number in cerebral cortex of embryos as assessed by cell sorting analysis by flow cytometry. CONCLUSIONS: Altogether, the current findings demonstrate that ethanol impacts the expansion of basal progenitors by inducing cytostasis that might explain the anomalies of cortico-cerebral development associated with fetal alcohol syndrome.


Asunto(s)
Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Etanol/toxicidad , Trastornos del Espectro Alcohólico Fetal/metabolismo , Lóbulo Frontal/metabolismo , Fase G1/efectos de los fármacos , Células-Madre Neurales/metabolismo , Fase S/efectos de los fármacos , Trastornos del Sistema Nervioso Inducidos por Alcohol/patología , Animales , Ciclina D1/metabolismo , Femenino , Trastornos del Espectro Alcohólico Fetal/patología , Lóbulo Frontal/patología , Células-Madre Neurales/patología , Embarazo , Ratas , Proteínas de Dominio T Box/metabolismo
2.
Mol Pharmacol ; 80(6): 988-99, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21873460

RESUMEN

Ethanol (ETOH) can cause apoptotic death of neurons by depleting GSH with an associated increase in oxidative stress. The current study illustrates a means to overcome this ETOH-induced neurotoxicity by enhancing GSH through boosting Nrf2, a transcription factor that controls GSH homeostasis. ETOH treatment caused a significant increase in Nrf2 protein, transcript expression, Nrf2-DNA binding activity, and expression of its transcriptional target, NQO1, in primary cortical neuron (PCNs). However, this increase in Nrf2 did not maintain GSH levels in response to ETOH, and apoptotic death still occurred. To elucidate this phenomenon, we silenced Nrf2 in neurons and found that ETOH-induced GSH depletion and the increase in superoxide levels were exacerbated. Furthermore, Nrf2 knockdown resulted in significantly increased (P < 0.05) caspase 3 activity and apoptosis. Adenovirus-mediated overexpression of Nrf2 prevented ETOH-induced depletion of GSH from the medium and high GSH subpopulations and prevented ETOH-related apoptotic death. These studies illustrate the importance of Nrf2-dependent maintenance of GSH homeostasis in cerebral cortical neurons in the defense against oxidative stress and apoptotic death elicited by ETOH exposure.


Asunto(s)
Apoptosis/fisiología , Corteza Cerebral/metabolismo , Etanol/toxicidad , Regulación de la Expresión Génica , Factor 2 Relacionado con NF-E2/biosíntesis , Neuronas/metabolismo , Animales , Apoptosis/efectos de los fármacos , Corteza Cerebral/citología , Corteza Cerebral/efectos de los fármacos , Técnicas de Cocultivo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glutatión/deficiencia , Factor 2 Relacionado con NF-E2/genética , Neuronas/efectos de los fármacos , Embarazo , Ratas , Ratas Sprague-Dawley
3.
Toxicol Lett ; 228(3): 179-91, 2014 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-24866057

RESUMEN

Epidemiological and animal studies suggest that environmental toxins including paraquat (PQ) increase the risk of developing Parkinson's disease (PD) by damaging nigrostriatal dopaminergic neurons. We previously showed that overexpression of a group of microRNAs (miRs) affects the antioxidant promoting factor, Nrf2 and related glutathione-redox homeostasis in SH-SY5Y dopaminergic neurons. Although, dysregulation of redox balance by PQ is well documented, the role for miRs and their impact have not been elucidated. In the current study we investigated whether PQ impairs Nrf2 and its related cytoprotective machinery by misexpression of specific fine tune miRs in SH-SY5Y neurons. Real time PCR analysis revealed that PQ significantly (p<0.05) increased the expression of brain enriched miR153 with an associated decrease in Nrf2 and its function as revealed by decrease in 4× ARE activity and expression of GCLC and NQO1. Also, PQ and H2O2-induced decrease in Nrf2 3' UTR activity was restored on miR153 site mutation suggesting a 3' UTR interacting role. Overexpression of either anti-miR153 or Nrf2 cDNA devoid of 3' UTR prevented PQ and H2O2-induced loss in Nrf2 activity confirming that PQ could cause miR153 to bind to and target Nrf2 3' UTR thereby weakening the cellular antioxidant defense. Adenovirus mediated overexpression of cytoplasmic catalase (Ad cCAT) confirmed that PQ induced miR153 is hydrogen peroxide (H2O2) dependent. In addition, Ad cCAT significantly (p<0.05) negated the PQ induced dysregulation of Nrf2 and function along with minimizing ROS, caspase 3/7 activation and neuronal death. Altogether, these results suggest a critical role for oxidant mediated miR153-Nrf2/ARE pathway interaction in paraquat neurotoxicity. This novel finding facilitates the understanding of molecular mechanisms and to develop appropriate management alternatives to counteract PQ-induced neuronal pathogenesis.


Asunto(s)
Elementos de Respuesta Antioxidante/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Peróxido de Hidrógeno/toxicidad , MicroARNs/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Síndromes de Neurotoxicidad/etiología , Paraquat/toxicidad , Regiones no Traducidas 3' , Sitios de Unión , Caspasa 3/metabolismo , Caspasa 7/metabolismo , Catalasa/genética , Catalasa/metabolismo , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Citoprotección , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/patología , Regulación de la Expresión Génica , Humanos , MicroARNs/genética , Factor 2 Relacionado con NF-E2/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/metabolismo , Síndromes de Neurotoxicidad/patología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transfección
4.
PLoS One ; 9(5): e98080, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24837604

RESUMEN

Ingestion of ethanol (ETOH) during pregnancy induces grave abnormalities in developing fetal brain. We have previously reported that ETOH induces programmed cell death 4 (PDCD4), a critical regulator of cell growth, in cultured fetal cerebral cortical neurons (PCNs) and in the cerebral cortex in vivo and affect protein synthesis as observed in Fetal Alcohol Spectrum Disorder (FASD). However, the mechanism which activates PDCD4 in neuronal systems is unclear and understanding this regulation may provide a counteractive strategy to correct the protein synthesis associated developmental changes seen in FASD. The present study investigates the molecular mechanism by which ethanol regulates PDCD4 in cortical neuroblasts, the immediate precursor of neurons. ETOH treatment significantly increased PDCD4 protein and transcript expression in spontaneously immortalized rat brain neuroblasts. Since PDCD4 is regulated at both the post-translational and post-transcriptional level, we assessed ETOH's effect on PDCD4 protein and mRNA stability. Chase experiments demonstrated that ETOH does not significantly impact either PDCD4 protein or mRNA stabilization. PDCD4 promoter-reporter assays confirmed that PDCD4 is transcriptionally regulated by ETOH in neuroblasts. Given a critical role of glycogen synthase kinase 3ß (GSK-3ß) signaling in regulating protein synthesis and neurotoxic mechanisms, we investigated the involvement of GSK-3ß and showed that multifunctional GSK-3ß was significantly activated in response to ETOH in neuroblasts. In addition, we found that ETOH-induced activation of PDCD4 was inhibited by pharmacologic blockade of GSK-3ß using inhibitors, lithium chloride (LiCl) and SB-216763 or siRNA mediated silencing of GSK-3ß. These results suggest that ethanol transcriptionally upregulates PDCD4 by enhancing GSK-3ß signaling in cortical neuroblasts. Further, we demonstrate that canonical Wnt-3a/GSK-3ß signaling is involved in regulating PDCD4 protein expression. Altogether, we provide evidence that GSK-3ß/PDCD4 network may represent a critical modulatory point to manage the protein synthetic anomalies and growth aberrations of neural cells seen in FASD.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Etanol/farmacología , Glucógeno Sintasa Quinasa 3/metabolismo , Células-Madre Neurales/efectos de los fármacos , Transducción de Señal , Activación Transcripcional , Animales , Proteínas Reguladoras de la Apoptosis/genética , Línea Celular Tumoral , Células Cultivadas , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3 beta , Humanos , Células-Madre Neurales/metabolismo , Ratas
5.
Environ Toxicol Pharmacol ; 33(2): 353-60, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22301167

RESUMEN

Primary cultures of fetal rat cortical neurons and astrocytes were used to test the hypothesis that astrocyte-mediated control of neuronal glutathione (GSH) is a potent factor in neuroprotection against rotenone and paraquat. In neurons, rotenone (0.025-1 µM) for 4 and 24 h decreased viability as did paraquat (2-100 µM). Rotenone (30 nM) decreased neuronal viability and GSH by 24% and 30%, while ROS were increased by 56%. Paraquat (30 µM) decreased neuronal viability and GSH by 36% and 70%, while ROS were increased by 23%. When neurons were co-cultured with astrocytes, their GSH increased 1.5 fold and 5 fold at 12 and 24 h. Co-culturing with astrocytes blocked neuronal death and damage by rotenone and paraquat. Astrocyte-mediated neuroprotection was dependent on the activity of components of the γ-glutamyl cycle. These studies illustrate the importance of astrocyte-mediated glutathione homeostasis for protection of neurons from rotenone and paraquat and the role of the γ-glutamyl cycle in this neuroprotection.


Asunto(s)
Astrocitos/efectos de los fármacos , Corteza Cerebral/efectos de los fármacos , Herbicidas/toxicidad , Insecticidas/toxicidad , Neuronas/efectos de los fármacos , Paraquat/toxicidad , Rotenona/toxicidad , Animales , Animales Recién Nacidos , Astrocitos/metabolismo , Antígenos CD13/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Técnicas de Cocultivo , Citoprotección , Relación Dosis-Respuesta a Droga , Glutatión/metabolismo , Neuronas/metabolismo , Neuronas/patología , Estrés Oxidativo/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Factores de Tiempo , gamma-Glutamiltransferasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA