Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Virol ; 97(10): e0132523, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37823646

RESUMEN

IMPORTANCE: Itaconate derivates, as well as the naturally produced metabolite, have been proposed as antivirals against influenza virus. Here, the mechanism behind the antiviral effects of exogenous 4-octyl itaconate (4-OI), a derivative of itaconate, against the influenza A virus replication is demonstrated. The data indicate that 4-OI targets the cysteine at position 528 of the CRM1 protein, resulting in inhibition of the nuclear export of viral ribonucleoprotein complexes in a similar manner as previously described for other selective inhibitors of nuclear export. These results postulate a mechanism not observed before for this immuno-metabolite derivative. This knowledge is helpful for the development of derivatives of 4-OI as potential antiviral and anti-inflammatory therapeutics.


Asunto(s)
Antivirales , Proteína Exportina 1 , Gripe Humana , Succinatos , Replicación Viral , Humanos , Transporte Activo de Núcleo Celular , Antivirales/farmacología , Proteínas Nucleares/metabolismo , Replicación Viral/efectos de los fármacos , Succinatos/farmacología , Proteína Exportina 1/metabolismo
2.
mSphere ; 9(2): e0074323, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38265200

RESUMEN

Human metapneumovirus (HMPV), a member of the Pneumoviridae family, causes upper and lower respiratory tract infections in humans. In vitro studies with HMPV have mostly been performed in monolayers of undifferentiated epithelial cells. In vivo studies in cynomolgus macaques and cotton rats have shown that ciliated epithelial cells are the main target of HMPV infection, but these observations cannot be studied in monolayer systems. Here, we established an organoid-derived bronchial culture model that allows physiologically relevant studies on HMPV. Inoculation with multiple prototype HMPV viruses and recent clinical virus isolates led to differences in replication among HMPV isolates. Prolific HMPV replication in this model caused damage to the ciliary layer, including cilia loss at advanced stages post-infection. These cytopathic effects correlated with those observed in previous in vivo studies with cynomolgus macaques. The assessment of the innate immune responses in three donors upon HMPV and RSV inoculation highlighted the importance of incorporating multiple donors to account for donor-dependent variation. In conclusion, these data indicate that the organoid-derived bronchial cell culture model resembles in vivo findings and is therefore a suitable and robust model for future HMPV studies. IMPORTANCE: Human metapneumovirus (HMPV) is one of the leading causative agents of respiratory disease in humans, with no treatment or vaccine available yet. The use of primary epithelial cultures that recapitulate the tissue morphology and biochemistry of the human airways could aid in defining more relevant targets to prevent HMPV infection. For this purpose, this study established the first primary organoid-derived bronchial culture model suitable for a broad range of HMPV isolates. These bronchial cultures were assessed for HMPV replication, cellular tropism, cytopathology, and innate immune responses, where the observations were linked to previous in vivo studies with HMPV. This study exposed an important gap in the HMPV field since extensively cell-passaged prototype HMPV B viruses did not replicate in the bronchial cultures, underpinning the need to use recently isolated viruses with a controlled passage history. These results were reproducible in three different donors, supporting this model to be suitable to study HMPV infection.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Humanos , Animales , Metapneumovirus/fisiología , Citología , Replicación Viral , Infecciones por Paramyxoviridae/patología , Epitelio , Macaca , Tropismo
3.
iScience ; 26(9): 107698, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37680489

RESUMEN

Viral sensing in myeloid cells involves inflammasome activation leading to gasdermin pore formation, cytokine release, and cell death. However, less is known about viral sensing in barrier epithelial cells, which are critical to the innate immune response to RNA viruses. Here, we show that poly(I:C), a mimic of viral dsRNA, is sensed by NLRP1 in human bronchial epithelial cells, leading to inflammasome-dependent gasdermin D (GSDMD) pore formation via caspase-1. DsRNA also stimulated a parallel sensing pathway via PKR which activated caspase-3 to cleave gasdermin E (GSDME) to form active pores. Influenza A virus (IAV) infection of cells caused GSDME activation, cytokine release, and cell death, in a PKR-dependent but NLRP1-independent manner, involving caspase-8 and caspase-3. Suppression of GSDMD and GSDME expression increased IAV replication. These data clarify mechanisms of gasdermin cleavage in response to viral sensing and reveal that gasdermin pore formation is intrinsically antiviral in human epithelial cells.

4.
Transbound Emerg Dis ; 69(6): 3360-3370, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36029486

RESUMEN

Avian metapneumovirus (AMPV) represents a long-term threat to the poultry industry due to its etiological role in the induction of acute respiratory disease and/or egg drop syndrome in domestic turkeys, chickens, and ducks. Although this disease is commonly referred to as turkey rhinotracheitis, the host range of AMPV encompasses many avian species. We have screened 1323 oropharyngeal- and cloacal swab samples obtained from wild mallards in the Netherlands from 2017 to 2019 by RT-PCR using a degenerate primer pair to detect all members of the Paramyxoviridae and Pneumoviridae or an avian metapneumovirus subtype C (AMPV-C)-specific RT-qPCR assay. We identified a total of seven cases of AMPV-C infections in wild, healthy mallards (Anas platyrhynchos), of which two AMPV-C positive samples were further processed using next-generation sequencing. Phylogenetic analysis of the two complete genomes showed that the newly identified AMPV-C strains share closest sequence identity (97%) with Eurasian lineage AMPV-C strains identified in Muscovy ducks in China that presented with severe respiratory disease and egg production loss in 2011. Further analysis of G protein amino acid sequences showed a high degree of variability between the newly identified AMPV-C variants. PONDR scoring of the G protein has revealed the ectodomain of AMPV-C to be partitioned into a long intrinsically disordered and short ordered region, giving insights into AMPV G protein structural biology. In summary, we provide the first report of full-length AMPV-C genome sequences derived from wild birds in Europe. This emphasizes the need for further surveillance efforts to better characterize the host range, epidemiologic distribution, and pathogenicity of AMPV-C to determine the risk posed by cross-species jumps from wildfowl to domesticated avian species.


Asunto(s)
Metapneumovirus , Infecciones por Paramyxoviridae , Enfermedades de las Aves de Corral , Animales , Metapneumovirus/genética , Infecciones por Paramyxoviridae/epidemiología , Infecciones por Paramyxoviridae/veterinaria , Patos , Países Bajos/epidemiología , Filogenia , Pollos , Enfermedades de las Aves de Corral/epidemiología , Anticuerpos Antivirales/metabolismo , Pavos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA