Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutr Res Rev ; 34(2): 276-302, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34057057

RESUMEN

Dietary intake and tissue levels of carotenoids have been associated with a reduced risk of several chronic diseases, including cardiovascular diseases, type 2 diabetes, obesity, brain-related diseases and some types of cancer. However, intervention trials with isolated carotenoid supplements have mostly failed to confirm the postulated health benefits. It has thereby been speculated that dosing, matrix and synergistic effects, as well as underlying health and the individual nutritional status plus genetic background do play a role. It appears that our knowledge on carotenoid-mediated health benefits may still be incomplete, as the underlying mechanisms of action are poorly understood in relation to human relevance. Antioxidant mechanisms - direct or via transcription factors such as NRF2 and NF-κB - and activation of nuclear hormone receptor pathways such as of RAR, RXR or also PPARs, via carotenoid metabolites, are the basic principles which we try to connect with carotenoid-transmitted health benefits as exemplified with described common diseases including obesity/diabetes and cancer. Depending on the targeted diseases, single or multiple mechanisms of actions may play a role. In this review and position paper, we try to highlight our present knowledge on carotenoid metabolism and mechanisms translatable into health benefits related to several chronic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Antioxidantes , Carotenoides , Suplementos Dietéticos , Humanos , Estado Nutricional
2.
Int J Mol Sci ; 20(15)2019 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-31349613

RESUMEN

Treatment with all-trans retinoic acid (ATRA), the carboxylic form of vitamin A, lowers body weight in rodents by promoting oxidative metabolism in multiple tissues including white and brown adipose tissues. We aimed to identify novel markers of the metabolic impact of ATRA through targeted blood metabolomics analyses, with a focus on acylcarnitines and amino acids. Blood was obtained from mice treated with a high ATRA dose (50 mg/kg body weight/day, subcutaneous injection) or placebo (controls) during the 4 days preceding collection. LC-MS/MS analyses with a focus on acylcarnitines and amino acids were conducted on plasma and PBMC. Main results showed that, relative to controls, ATRA-treated mice had in plasma: increased levels of carnitine, acetylcarnitine, and longer acylcarnitine species; decreased levels of citrulline, and increased global arginine bioavailability ratio for nitric oxide synthesis; increased levels of creatine, taurine and docosahexaenoic acid; and a decreased n-6/n-3 polyunsaturated fatty acids ratio. While some of these features likely reflect the stimulation of lipid mobilization and oxidation promoted by ATRA treatment systemically, other may also play a causal role underlying ATRA actions. The results connect ATRA to specific nutrition-modulated biochemical pathways, and suggest novel mechanisms of action of vitamin A-derived retinoic acid on metabolic health.


Asunto(s)
Aminoácidos/sangre , Carnitina/análogos & derivados , Metaboloma/efectos de los fármacos , Metabolómica , Tretinoina/farmacología , Tejido Adiposo , Animales , Carnitina/sangre , Perfilación de la Expresión Génica , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Metabolómica/métodos , Ratones , Modelos Biológicos , Oxidación-Reducción/efectos de los fármacos
3.
Cell Physiol Biochem ; 46(1): 187-202, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29587291

RESUMEN

BACKGROUND/AIMS: All-trans retinoic acid (ATRA) has protective effects against obesity and metabolic syndrome. We here aimed to gain further insight into the interaction of ATRA with skeletal muscle metabolism and secretory activity as important players in metabolic health. METHODS: Cultured murine C2C12 myocytes were used to study direct effects of ATRA on cellular fatty acid oxidation (FAO) rate (using radioactively-labelled palmitate), glucose uptake (using radioactively-labelled 2-deoxy-D-glucose), triacylglycerol levels (by an enzymatic method), and the expression of genes related to FAO and glucose utilization (by RT-real time PCR). We also studied selected myokine production (using ELISA and immunohistochemistry) in ATRA-treated myocytes and intact mice. RESULTS: Exposure of C2C12 myocytes to ATRA led to increased fatty acid consumption and decreased cellular triacylglycerol levels without affecting glucose uptake, and induced the expression of the myokine irisin at the mRNA and secreted protein level in a dose-response manner. ATRA stimulatory effects on FAO-related genes and the Fndc5 gene (encoding irisin) were reproduced by agonists of peroxisome proliferator-activated receptor ß/δ and retinoid X receptors, but not of retinoic acid receptors, and were partially blocked by an AMP-dependent protein kinase inhibitor. Circulating irisin levels were increased by 5-fold in ATRA-treated mice, linked to increased Fndc5 transcription in liver and adipose tissues, rather than skeletal muscle. Immunohistochemistry analysis of FNDC5 suggested that ATRA treatment enhances the release of FNDC5/irisin from skeletal muscle and the liver and its accumulation in interscapular brown and inguinal white adipose depots. CONCLUSION: These results provide new mechanistic insights on how ATRA globally stimulates FAO and enhances irisin secretion, thereby contributing to leaning effects and improved metabolic status.


Asunto(s)
Fibronectinas/metabolismo , Tretinoina/farmacología , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Ácidos Grasos/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Fibronectinas/sangre , Fibronectinas/genética , Glucosa/metabolismo , Interleucina-6/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Masculino , Ratones , Músculo Esquelético/citología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Neuropéptidos/análisis , Neuropéptidos/metabolismo , PPAR delta/agonistas , PPAR delta/metabolismo , PPAR-beta/agonistas , PPAR-beta/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Receptores X Retinoide/agonistas , Receptores X Retinoide/metabolismo , Triglicéridos/metabolismo
4.
Cell Physiol Biochem ; 42(2): 564-578, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28578347

RESUMEN

BACKGROUND/AIMS: The aim of this study was to gain more insight into the beneficial effects of mango fruit powder on the early metabolic adverse effects of a high-fat diet. METHODS: The progressive dose-response effects of mango fruit powder on body composition, circulating parameters, and the expression of genes related to fatty acid oxidation and insulin sensitivity in key tissues were studied in mice fed a moderate (45%) high-fat diet. RESULTS: Findings suggest that mango fruit powder exerts physiological protective effects in the initial steps of insulin resistance and hepatic lipid accumulation induced by a high-fat diet in mice. Moreover, AMPK and SIRT1 appear as key regulators of the observed improvement in fatty acid oxidation capacity, as well as of the improved insulin sensitivity and the increased glucose uptake and metabolism through the glycolytic pathway capacity in liver and skeletal muscle. CONCLUSION: In summary, this study provides evidence that the functional food ingredient (CarelessTM) from mango fruit prevents early metabolic alterations caused by a high-fat diet in the initial stages of the metabolic syndrome.


Asunto(s)
Frutas/química , Resistencia a la Insulina , Mangifera/química , Obesidad/dietoterapia , Polvos/administración & dosificación , Animales , Glucemia/efectos de los fármacos , Peso Corporal , Dieta Alta en Grasa/efectos adversos , Humanos , Insulina/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Ratones , Obesidad/metabolismo , Obesidad/patología , Oxidación-Reducción , Polvos/química , Sustancias Protectoras/administración & dosificación , Sustancias Protectoras/química
5.
Subcell Biochem ; 79: 377-414, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27485231

RESUMEN

Cell, animal and human studies dealing with carotenoids and carotenoid derivatives as nutritional regulators of adipose tissue biology with implications for the etiology and management of obesity and obesity-related metabolic diseases are reviewed. Most studied carotenoids in this context are ß-carotene, cryptoxanthin, astaxanthin and fucoxanthin, together with ß-carotene-derived retinoids and some other apocarotenoids. Studies indicate an impact of these compounds on essential aspects of adipose tissue biology including the control of adipocyte differentiation (adipogenesis), adipocyte metabolism, oxidative stress and the production of adipose tissue-derived regulatory signals and inflammatory mediators. Specific carotenoids and carotenoid derivatives restrain adipogenesis and adipocyte hypertrophy while enhancing fat oxidation and energy dissipation in brown and white adipocytes, and counteract obesity in animal models. Intake, blood levels and adipocyte content of carotenoids are reduced in human obesity. Specifically designed human intervention studies in the field, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. In summary, studies support a role of specific carotenoids and carotenoid derivatives in the prevention of excess adiposity, and suggest that carotenoid requirements may be dependent on body composition.


Asunto(s)
Tejido Adiposo/metabolismo , Carotenoides/metabolismo , Obesidad/metabolismo , beta Caroteno/metabolismo , Adipocitos/metabolismo , Tejido Adiposo/patología , Animales , Carotenoides/uso terapéutico , Criptoxantinas/metabolismo , Humanos , Obesidad/dietoterapia , Obesidad/patología , Xantófilas/metabolismo
6.
J Cell Physiol ; 231(9): 1941-52, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26727985

RESUMEN

Mechanisms behind the emergence of brown adipocyte-like (brite or beige) adipocytes within white adipose tissue (WAT) are of interest. Retinoblastoma protein gene (Rb) haploinsufficiency associates in mice with improved metabolic regulation linked to a greater capacity for fatty acid oxidation and thermogenesis in WAT. We aimed to explain a feasible mechanism of WAT-to-BAT remodeling in this model. Differentiated primary adipocytes and Sca1-positive preadipocytes derived from adipose depots of Rb(+/-) mice and wild-type siblings were compared. Primary white Rb(+/-) adipocytes displayed under basal conditions increased glucose uptake and an enhanced expression of brown adipocyte-related genes (Pparg, Ppargc1a, Ppargc1b, Prdm16, Cpt1b) but not of purported beige/brite transcriptional markers (Cd137, Tmem26, Tbx1, Slc27a1, Hoxc9, Shox2). Lack of induction of beige markers phenocopied results in WAT of adult Rb(+/-) mice. Flow cytometry analysis evidenced an increased number of preadipocytes in WAT depots of Rb(+/-) mice. Sca1(+) preadipocytes from WAT of Rb(+/-) mice displayed increased gene expression of several transcription factors common to the brown and beige adipogenic programs (Prdm16, Pparg, Ppargc1a) and of receptors of bone morphogenetic proteins (BMPs); however, among the recently proposed beige markers, only Tbx1 was upregulated. Adult Rb(+/-) mice had increased circulating levels of BMP7. These results indicate that preadipose cells resident in WAT depots of Rb(+/-) mice retain an increased capacity for brown-like adipogenesis that appears to be different from beige adipogenesis, and suggest that the contribution of these precursors to the Rb(+/-) adipose phenotype is driven, at least in part, by interaction with BMP7 pathways. J. Cell. Physiol. 231: 1941-1952, 2016. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Adipocitos Marrones/citología , Adipogénesis/fisiología , Proteína de Retinoblastoma/metabolismo , Retinoblastoma/metabolismo , Factores de Transcripción/metabolismo , Adipocitos Marrones/metabolismo , Tejido Adiposo Blanco/citología , Tejido Adiposo Blanco/metabolismo , Animales , Diferenciación Celular/fisiología , Femenino , Expresión Génica/genética , Genes de Retinoblastoma/genética , Haplotipos , Masculino , Ratones , Ratones Noqueados , Obesidad/metabolismo , Fenotipo , Retinoblastoma/genética , Proteína de Retinoblastoma/genética , Termogénesis
7.
J Cell Physiol ; 231(3): 708-18, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26241807

RESUMEN

Deficiency in the retinoblastoma protein (Rb) favors leanness and a healthy metabolic profile in mice largely attributed to activation of oxidative metabolism in white and brown adipose tissues. Less is known about Rb modulation of skeletal muscle metabolism. This was studied here by transiently knocking down Rb expression in differentiated C2C12 myotubes using small interfering RNAs. Compared with control cells transfected with non-targeting RNAs, myotubes silenced for Rb (by 80-90%) had increased expression of genes related to fatty acid uptake and oxidation such as Cd36 and Cpt1b (by 61% and 42%, respectively), increased Mitofusin 2 protein content (∼2.5-fold increase), increased mitochondrial to nuclear DNA ratio (by 48%), increased oxygen consumption (by 65%) and decreased intracellular lipid accumulation. Rb silenced myotubes also displayed up-regulated levels of glucose transporter type 4 expression (∼5-fold increase), increased basal glucose uptake, and enhanced insulin-induced Akt phosphorylation. Interestingly, exercise in mice led to increased Rb phosphorylation (inactivation) in skeletal muscle as evidenced by immunohistochemistry analysis. In conclusion, the silencing of Rb enhances mitochondrial oxidative metabolism and fatty acid and glucose disposal in skeletal myotubes, and changes in Rb status may contribute to muscle physiological adaptation to exercise.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Proteína de Retinoblastoma/metabolismo , Animales , Técnicas de Silenciamiento del Gen/métodos , Insulina/farmacología , Ratones , Desarrollo de Músculos/efectos de los fármacos , Desarrollo de Músculos/fisiología , Músculo Esquelético/efectos de los fármacos , Oxidación-Reducción/efectos de los fármacos , Proteína de Retinoblastoma/deficiencia
8.
J Lipid Res ; 56(6): 1100-9, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25914170

RESUMEN

A positive effect of all-trans retinoic acid (ATRA) on white adipose tissue (WAT) oxidative and thermogenic capacity has been described and linked to an in vivo fat-lowering effect of ATRA in mice. However, little is known about the effects of ATRA on mitochondria in white fat. Our objective has been to characterize the effect of ATRA on mitochondria biogenesis and oxidative phosphorylation (OXPHOS) capacity in mature white adipocytes. Transcriptome analysis, oxygraphy, analysis of mitochondrial DNA (mtDNA), and flow cytometry-based analysis of mitochondria density were performed in mature 3T3-L1 adipocytes after 24 h incubation with ATRA (2 µM) or vehicle. Selected genes linked to mitochondria biogenesis and function and mitochondria immunostaining were analyzed in WAT tissues of ATRA-treated as compared with vehicle-treated mice. ATRA upregulated the expression of a large set of genes linked to mtDNA replication and transcription, mitochondrial biogenesis, and OXPHOS in adipocytes, as indicated by transcriptome analysis. Oxygen consumption rate, mtDNA content, and staining of mitochondria were increased in the ATRA-treated adipocytes. Similar results were obtained in WAT depots of ATRA-treated mice. We conclude that ATRA impacts mitochondria in adipocytes, leading to increased OXPHOS capacity and mitochondrial content in these cells.


Asunto(s)
ADN Mitocondrial/genética , Proteínas Mitocondriales/biosíntesis , Biogénesis de Organelos , Tretinoina/metabolismo , Adipocitos/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , ADN Mitocondrial/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Ratones , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa
9.
Am J Physiol Endocrinol Metab ; 308(2): E172-83, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25406261

RESUMEN

Retinoblastoma protein (pRb) is involved in the control of energy metabolism, and its inactivation protects mice against high-fat diet-induced diabesity. Here, we tested the hypothesis that partial deficiency in the Rb gene could confer metabolic advantages in front of acute challenges to metabolism and as mice age on a regular diet. Rb haploinsufficient (Rb(+/-)) mice and wild-type (WT) littermates were studied from weaning and characterized at 1.5-2.5 mo of age (young adults) and 6-7.5 mo of age (mature adults). Whereas no differences in body weight or composition were observed at young age, mature adult Rb(+/-) mice were leaner than WT littermates, displaying 36% reduced body fat content. At both ages studied, Rb(+/-) mice displayed improved blood lipids, enhanced sensitivity to the blood glucose-lowering effect of insulin and to the anorectic effect of leptin, and a reduced respiratory exchange ratio, indicative of an increased use of fatty acids as a fuel. Insulin sensitivity and oral fat tolerance were better maintained with age in the Rb(+/-) than the WT mice. Mature adult Rb(+/-) mice displayed gene expression changes consistent with increased fatty acid oxidation in white adipose tissue and skeletal muscle and paramount signs of browning in the inguinal white adipose tissue. In conclusion, Rb haploinsufficiency provides metabolic advantages in front of acute metabolic stressors and ameliorates body fat gain and metabolic impairments that normally accompany transition from young to mature adult age.


Asunto(s)
Adipogénesis/fisiología , Envejecimiento/fisiología , Ingestión de Energía/fisiología , Haploinsuficiencia/fisiología , Proteína de Retinoblastoma/metabolismo , Adipogénesis/genética , Envejecimiento/genética , Animales , Temperatura Corporal/fisiología , Calorimetría Indirecta , Ingestión de Energía/genética , Perfilación de la Expresión Génica , Prueba de Tolerancia a la Glucosa , Haploinsuficiencia/genética , Inmunohistoquímica , Insulina/sangre , Leptina/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Proteína de Retinoblastoma/genética
10.
Arch Biochem Biophys ; 572: 112-125, 2015 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-25721497

RESUMEN

A novel perspective of the function of carotenoids and carotenoid-derived products - including, but not restricted to, the retinoids - is emerging in recent years which connects these compounds to the control of adipocyte biology and body fat accumulation, with implications for the management of obesity, diabetes and cardiovascular disease. Cell and animal studies indicate that carotenoids and carotenoids derivatives can reduce adiposity and impact key aspects of adipose tissue biology including adipocyte differentiation, hypertrophy, capacity for fatty acid oxidation and thermogenesis (including browning of white adipose tissue) and secretory function. Epidemiological studies in humans associate higher dietary intakes and serum levels of carotenoids with decreased adiposity. Specifically designed human intervention studies, though still sparse, indicate a beneficial effect of carotenoid supplementation in the accrual of abdominal adiposity. The objective of this review is to summarize recent findings in this area, place them in physiological contexts, and provide likely regulatory schemes whenever possible. The focus will be on the effects of carotenoids as nutritional regulators of adipose tissue biology and both animal and human studies, which support a role of carotenoids and retinoids in the prevention of abdominal adiposity.


Asunto(s)
Adipocitos/citología , Adiposidad , Carotenoides/metabolismo , Obesidad/metabolismo , Adipocitos/patología , Adipogénesis , Animales , Humanos , Obesidad/patología
11.
Cells ; 13(10)2024 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-38786092

RESUMEN

The early stages of life, especially the period from conception to two years, are crucial for shaping metabolic health and the risk of obesity in adulthood. Adipose tissue (AT) plays a crucial role in regulating energy homeostasis and metabolism, and brown AT (BAT) and the browning of white AT (WAT) are promising targets for combating weight gain. Nutritional factors during prenatal and early postnatal stages can influence the development of AT, affecting the likelihood of obesity later on. This narrative review focuses on the nutritional programming of AT features. Research conducted across various animal models with diverse interventions has provided insights into the effects of specific compounds on AT development and function, influencing the development of crucial structures and neuroendocrine circuits responsible for energy balance. The hormone leptin has been identified as an essential nutrient during lactation for healthy metabolic programming against obesity development in adults. Studies have also highlighted that maternal supplementation with polyunsaturated fatty acids (PUFAs), vitamin A, nicotinamide riboside, and polyphenols during pregnancy and lactation, as well as offspring supplementation with myo-inositol, vitamin A, nicotinamide riboside, and resveratrol during the suckling period, can impact AT features and long-term health outcomes and help understand predisposition to obesity later in life.


Asunto(s)
Micronutrientes , Obesidad , Humanos , Animales , Obesidad/metabolismo , Micronutrientes/farmacología , Micronutrientes/metabolismo , Tejido Adiposo Pardo/efectos de los fármacos , Tejido Adiposo Pardo/metabolismo , Femenino , Embarazo , Tejido Adiposo/metabolismo , Tejido Adiposo/efectos de los fármacos , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/uso terapéutico
12.
Biochim Biophys Acta ; 1821(1): 177-89, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21669299

RESUMEN

Evidence has accumulated that specific retinoids impact on developmental and biochemical processes influencing mammalian adiposity including adipogenesis, lipogenesis, adaptive thermogenesis, lipolysis and fatty acid oxidation in tissues. Treatment with retinoic acid, in particular, has been shown to reduce body fat and improve insulin sensitivity in lean and obese rodents by enhancing fat mobilization and energy utilization systemically, in tissues including brown and white adipose tissues, skeletal muscle and the liver. Nevertheless, controversial data have been reported, particularly regarding retinoids' effects on hepatic lipid and lipoprotein metabolism and blood lipid profile. Moreover, the molecular mechanisms underlying retinoid effects on lipid metabolism are complex and remain incompletely understood. Here, we present a brief overview of mammalian lipid metabolism and its control, introduce mechanisms through which retinoids can impact on lipid metabolism, and review reported activities of retinoids on different aspects of lipid metabolism in key tissues, focusing on retinoic acid. Possible implications of this knowledge in the context of the management of obesity and the metabolic syndrome are also addressed. This article is part of a Special Issue entitled Retinoid and Lipid Metabolism.


Asunto(s)
Metabolismo de los Lípidos , Tretinoina/metabolismo , Tejido Adiposo/metabolismo , Animales , Metabolismo Energético , Humanos , Resistencia a la Insulina , Hígado/metabolismo , Receptores X del Hígado , Ratones , Músculo Esquelético/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Ratas , Receptores de Ácido Retinoico/metabolismo
13.
Biofactors ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38063391

RESUMEN

Glycosaminoglycans are complex carbohydrates used as nutraceuticals for diverse applications. We studied the potential of the glycosaminoglycan dermatan sulfate (DS) to counteract the development of diet-induced obesity (DIO) using obesity-prone mice fed a high-fat diet (HFD) as a model. Oral DS supplementation protected the animals against HFD-induced increases in whole-body adiposity, visceral fat mass, adipocyte size, blood glucose levels, insulin resistance, and pro-inflammatory lipids levels in brown adipose tissue (BAT) and the liver, where it largely counteracted the HFD-induced changes in the nonpolar metabolome. Protection against DIO in the DS-supplemented mice occurred despite higher energy intake and appeared to be associated with increased energy expenditure, higher uncoupling protein 1 expression in BAT, decreased BAT "whitening," and an enhanced channeling of fuel substrates toward skeletal muscle. This work is the first preclinical study to examine the anti-obesity activity of DS tested individually in vivo. The results support possible uses of DS as an active component in functional foods/supplements to manage obesity and associated metabolic diseases.

14.
Brain Sci ; 13(10)2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37891835

RESUMEN

ß-carotene is a powerful antioxidant and dietary precursor of vitamin A whose role in maintaining mental health and cognitive performance, either alone or in combination with other dietary compounds, has been a topic of recent research. However, its effectiveness is still unclear. This systematic review, conducted according to the PRISMA guideline and assisted by the MySLR platform, addressed this issue. A total of 16 eligible original research articles were identified. Dietary intake or ß-carotene serum levels were associated with improved measures of cognitive function in 7 out of 10 epidemiological studies included. In intervention studies, ß-carotene consumption alone did not promote better cognitive function in the short term, but only in a long-term intervention with a mean duration of 18 years. However, all but one intervention study suggested the beneficial effects of ß-carotene supplementation at doses ranging from 6 mg to 50 mg per day in combination with a multicomplex such as vitamin E, vitamin C, zinc, or selenium for a period of 16 weeks to 20 years. Despite the current limitations, the available evidence suggests a potential association between ß-carotene dietary/supplementary intake and the maintenance of cognitive function. The ß-carotene most probably does not act alone but in synergy with other micronutrients.

15.
Front Pediatr ; 11: 1250731, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37772038

RESUMEN

Background: Physical activity (PA) provides health benefits across the lifespan and improves many established cardiovascular risk factors that have a significant impact on overall mortality. However, discrepancies between self-reported and device-based measures of PA make it difficult to obtain consistent results regarding PA and its health effects. Moreover, PA may produce different health effects depending on the type, intensity, duration, and frequency of activities and individual factors such as age, sex, body weight, early life conditions/exposures, etc. Appropriate biomarkers relating the degree of PA level with its effects on health, especially in children and adolescents, are required and missing. The main objective of the INTEGRActiv study is to identify novel useful integrative biomarkers of PA and its effects on the body health in children and adolescents, who represent an important target population to address personalized interventions to improve future metabolic health. Methods/design: The study is structured in two phases. First, biomarkers of PA and health will be identified at baseline in a core cohort of 180 volunteers, distributed into two age groups: prepubertal (n = 90), and postpubertal adolescents (n = 90). Each group will include three subgroups (n = 30) with subjects of normal weight, overweight, and obesity, respectively. Identification of new biomarkers will be achieved by combining physical measures (PA and cardiorespiratory and muscular fitness, anthropometry) and molecular measures (cardiovascular risk factors, endocrine markers, cytokines and circulating miRNA in plasma, gene expression profile in blood cells, and metabolomics profiling in plasma). In the second phase, an educational intervention and its follow-up will be carried out in a subgroup of these subjects (60 volunteers), as a first validation step of the identified biomarkers. Discussion: The INTEGRActiv study is expected to provide the definition of PA and health-related biomarkers (PA-health biomarkers) in childhood and adolescence. It will allow us to relate biomarkers to factors such as age, sex, body weight, sleep behavior, dietary factors, and pubertal status and to identify how these factors quantitatively affect the biomarkers' responses. Taken together, the INTEGRActiv study approach is expected to help monitor the efficacy of interventions aimed to improve the quality of life of children/adolescents through physical activity. Clinical Trial Registration: ClinicalTrials.gov, Identifier NCT05907785.

16.
Nutrients ; 14(11)2022 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-35684059

RESUMEN

Nicotinamide riboside, an NAD+ precursor, has been attracting a lot of attention in recent years due to its potential benefits against multiple metabolic complications and age-related disorders related to NAD+ decline in tissues. The metabolic programming activity of NR supplementation in early-life stages is much less known. Here, we studied the long-term programming effects of mild NR supplementation during the suckling period on lipid and oxidative metabolism in skeletal muscle and liver tissues using an animal model. Suckling male mice received a daily oral dose of NR or vehicle (water) from day 2 to 20 of age, were weaned at day 21 onto a chow diet, and at day 90 were distributed to either a high-fat diet (HFD) or a normal-fat diet for 10 weeks. Compared to controls, NR-treated mice were protected against HFD-induced triacylglycerol accumulation in skeletal muscle and displayed lower triacylglycerol levels and steatosis degree in the liver and distinct capacities for fat oxidation and decreased lipogenesis in both tissues, paralleling signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling. These pre-clinical findings suggest that mild NR supplementation in early postnatal life beneficially impacts lipid and energy metabolism in skeletal muscle and liver in adulthood, serving as a potential preventive strategy against obesity-related disorders characterized by ectopic lipid accumulation.


Asunto(s)
NAD , Niacinamida , Animales , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Metabolismo Energético , Metabolismo de los Lípidos , Lípidos/farmacología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , NAD/metabolismo , Niacinamida/análogos & derivados , Compuestos de Piridinio , Triglicéridos/metabolismo
17.
Br J Nutr ; 105(8): 1226-34, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21208487

RESUMEN

Trans-fatty acids (TFA) and cis-monounsaturated fat appear to exert detrimental and beneficial effects, respectively, on glucose metabolism and insulin sensitivity. Adipose tissue and skeletal muscle are a source of signalling proteins (adipokines and myokines), some of which have been related to the control of insulin sensitivity. Here, we investigated the possible differential effects of elaidic acid (EA; trans-9-18 : 1) - the major component in industrially produced TFA - and oleic acid (OA; cis-9-18 : 1) - its cis-isomer naturally present in food - on cellular glucose uptake and the expression of selected myokines and adipokines using cell models. Differentiated C2C12 myotubes and 3T3-L1 adipocytes were pretreated with the vehicle (control cells) or fatty acids for 24 h, after which basal and insulin-stimulated 2-deoxyglucose uptake and the expression of selected signalling proteins were measured. In C2C12 myotubes, pretreatment with OA, but not with EA, led to increased insulin-stimulated 2-deoxyglucose uptake and IL-6 expression levels, while pretreatment with EA, but not with OA, led to reduced IL-15 mRNA levels and increased TNF-α expression levels. In 3T3-L1 adipocytes, exposure to OA, but not to EA, resulted in reduced resistin gene expression and increased adiponectin gene expression. The results show evidence of distinct, direct effects of OA and EA on muscle glucose uptake and the expression of target myokines and adipokines, thus suggesting novel mechanisms by which cis- and trans-monounsaturated fat may differentially affect systemic functions.


Asunto(s)
Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Adipoquinas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Ácido Oléico/metabolismo , Células 3T3-L1 , Adipoquinas/genética , Animales , Antimetabolitos/farmacocinética , Transporte Biológico/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Línea Celular , Citocinas/genética , Citocinas/metabolismo , Desoxiglucosa/farmacocinética , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Ratones , Ácido Oléico/farmacología , Ácidos Oléicos , ARN Mensajero/metabolismo , Transducción de Señal/efectos de los fármacos , Estereoisomerismo , Ácidos Grasos trans/toxicidad
18.
Cell Mol Life Sci ; 67(12): 2039-56, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20372966

RESUMEN

Beta-carotene 15,15'-monooxygenase 1 knockout (Bcmo1 (-/-)) mice accumulate beta-carotene (BC) similarly to humans, whereas wild-type (Bcmo1 (+/+)) mice efficiently cleave BC. Bcmo1 (-/-) mice are therefore suitable to investigate BC-induced alterations in gene expression in lung, assessed by microarray analysis. Bcmo1 (-/-) mice receiving control diet had increased expression of inflammatory genes as compared to BC-supplemented Bcmo1 (-/-) mice and Bcmo1 (+/+) mice that received either control or BC-supplemented diets. Differential gene expression in Bcmo1 (-/-) mice was confirmed by real-time quantitative PCR. Histochemical analysis indeed showed an increase in inflammatory cells in lungs of control Bcmo1 (-/-) mice. Supported by metabolite and gene-expression data, we hypothesize that the increased inflammatory response is due to an altered BC metabolism, resulting in an increased vitamin A requirement in Bcmo1 (-/-) mice. This suggests that effects of BC may depend on inter-individual variations in BC-metabolizing enzymes, such as the frequently occurring human polymorphisms in BCMO1.


Asunto(s)
Pulmón/metabolismo , beta Caroteno/metabolismo , beta Caroteno/farmacología , beta-Caroteno 15,15'-Monooxigenasa/biosíntesis , Animales , Dieta , Suplementos Dietéticos , Femenino , Metabolismo de los Lípidos/genética , Ratones , Ratones Noqueados , beta Caroteno/genética , beta-Caroteno 15,15'-Monooxigenasa/genética
19.
J Nutr Biochem ; 95: 108770, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34000411

RESUMEN

Metabolic programming by dietary chemicals consumed in early life stages is receiving increasing attention. We here studied long-term effects of mild resveratrol (RSV) supplementation during lactation on muscular and hepatic lipid metabolism in adulthood. Newborn male mice received RSV or vehicle from day 2-20 of age, were weaned onto a chow diet on day 21, and were assigned to either a high-fat diet (HFD) or a normal-fat diet on day 90 of age for 10 weeks. RSV-treated mice showed in adulthood protection against HFD-induced triacylglycerol accumulation in skeletal muscle, enhanced muscular capacities for fat oxidation and mitochondria activity, signs of enhanced sirtuin 1 and AMP-dependent protein kinase signaling in muscle, and increased fat oxidation capacities and a decreased capacity for lipogenesis in liver compared with controls. Thus, RSV supplementation in early postnatal life may help preventing later diet-related disorders linked to ectopic lipid accumulation in muscle and liver tissues.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Resveratrol/farmacología , Adenilato Quinasa/genética , Adenilato Quinasa/metabolismo , Animales , Animales Lactantes , Antioxidantes/farmacología , Dieta Alta en Grasa , Suplementos Dietéticos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/crecimiento & desarrollo , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Ratones , Músculo Esquelético/crecimiento & desarrollo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
20.
Nutrients ; 13(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34684608

RESUMEN

Anti-obesity activity has been reported for beta-carotene (BC) supplementation at high doses and metformin (MET). We studied whether BC treatment at a closer to dietary dose and MET treatment at a lower than therapeutic dose are effective in ameliorating unwanted effects of an obesogenic diet and whether their combination is advantageous. Obesity-prone mice were challenged with a high-fat diet (HFD, 45% energy as fat) for 4 weeks while receiving a placebo or being treated orally with BC (3 mg/kg/day), MET (100 mg/kg/day), or their combination (BC+MET); a fifth group received a placebo and was kept on a normal-fat diet (10% energy as fat). HFD-induced increases in body weight gain and inguinal white adipose tissue (WAT) adipocyte size were attenuated maximally or selectively in the BC+MET group, in which a redistribution towards smaller adipocytes was noted. Cumulative energy intake was unaffected, yet results suggested increased systemic energy expenditure and brown adipose tissue activation in the treated groups. Unwanted effects of HFD on glucose control and insulin sensitivity were attenuated in the treated groups, especially BC and BC+MET, in which hepatic lipid content was also decreased. Transcriptional analyses suggested effects on skeletal muscle and WAT metabolism could contribute to better responses to the HFD, especially in the MET and BC+MET groups. The results support the benefits of the BC+MET cotreatment.


Asunto(s)
Dieta Alta en Grasa , Metformina/farmacología , Sustancias Protectoras/farmacología , beta Caroteno/farmacología , Adipocitos/metabolismo , Tejido Adiposo/metabolismo , Adiposidad , Animales , Glucemia/metabolismo , Tamaño de la Célula , Metabolismo Energético/genética , Ácidos Grasos/sangre , Regulación de la Expresión Génica , Insulina/sangre , Masculino , Ratones Endogámicos C57BL , ARN Mensajero/genética , ARN Mensajero/metabolismo , Aumento de Peso
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA