Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Gastrointest Liver Physiol ; 323(3): G157-G164, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35727128

RESUMEN

Obesity is associated with alterations in cholesterol and bile acid (BA) metabolism. However, the interaction among dietary intake, cholesterol absorption, and BA metabolism in patients with obesity remains unclear. We conducted a 4-wk nutritional intervention nonrandomized clinical trial with three different sequential diets for a week in the following order: regular diet (RD); high calorie, high-fat diet (HCHF), washout period on RD; and low-calorie, low-fat diet (LCLF). We provided participants with meal replacements during HCHF and LCLF diets. A total of 16 participants completed the study [n = 8 normal weight (NW); n = 8 with obesity (OB)]. Overall, there was a significant increase in intestinal cholesterol uptake when changing from RD to HCHF and a reduction in intestinal cholesterol uptake from HCHF to LCLF. When analyzing by BMI groups, these findings were similar in patients with NW (RD to HCHF: P < 0.007; HCHF to LCLF: P = 0.02); however, in patients with obesity, the change in intestinal cholesterol uptake was only observed when changing from RD to HCHF (P = 0.006). There was no correlation between cholesterol absorption and fecal bile acids or other markers of BA metabolism in all patients or the subgroups. Dietary caloric content had a significant effect on cholesterol absorption, however, this effect is blunted in patients with obesity. These data are consistent with the impaired effect of a low-fat diet on cholesterol absorption in obesity.NEW & NOTEWORTHY We show how switching from a regular diet to an HCHF increases cholesterol absorption in patients with normal weight and obesity. The decrease in cholesterol absorption from an HCHF to an LCLF, on the other hand, was only seen in normal-weight controls, underlining the importance of body weight in this regulation. In addition, changes in caloric and fat content had an immediate and direct effect on hepatic bile acid production.


Asunto(s)
Ácidos y Sales Biliares , Obesidad , Colesterol/metabolismo , Dieta con Restricción de Grasas , Ingestión de Energía , Humanos , Absorción Intestinal , Nutrientes , Obesidad/metabolismo
2.
Front Physiol ; 13: 878389, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35600311

RESUMEN

The heterogeneity of the human intestinal epithelium has hindered the understanding of the pathophysiology of distinct specialized cell types on a single-cell basis in disease states. Described here is a workflow for the cryopreservation of endoscopically obtained human intestinal mucosal biopsies, subsequent preparation of this tissue to yield highly viable fluorescence-activated cell sorting (FACS)isolated human intestinal epithelial cell (IEC) single-cell suspensions compatible with successful library preparation and deep single-cell RNA sequencing (scRNAseq). We validated this protocol in deep scRNAseq of 59,653 intestinal cells in 10 human participants. Furthermore, primary intestinal cultures were successfully generated from cryopreserved tissue, capable of surviving in short-term culture and suitable for physiological assays studying gut peptide secretion from rare hormone-producing enteroendocrine cells in humans. This study offers an accessible avenue for single-cell transcriptomics and ex vivo studies from cryopreserved intestinal mucosal biopsies. These techniques may be used in the future to dissect and define novel aberrations to the intestinal ecosystem that lead to the development and progression of disease states in humans, even in rare IEC populations.

3.
Obes Med ; 232021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34179564

RESUMEN

Enteroendocrine cells (EECs) are specialized cells that are widely distributed throughout the gastrointestinal tract. EECs sense luminal content and release hormones, such as: ghrelin, cholecystokinin, glucagon like peptide 1, peptide YY, insulin like peptide 5, and oxyntomodulin. These hormones can enter the circulation to act on distant targets or act locally on neighboring cells and neuronal pathways to modulate food digestion, food intake, energy balance and body weight. Obesity, insulin resistance and diabetes are associated with alterations in the levels of enteroendocrine hormones. Evidence also suggests that modified regulation and release of gut hormones are the result of compensatory mechanisms in states of excess adipose tissue and hyperglycemia. This review collects the evidence available detailing pathophysiological alterations in enteroendocrine hormones and their association with appetite, obesity and glycemic control.

4.
SAGE Open Med Case Rep ; 7: 2050313X18823098, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30675358

RESUMEN

Hereditary fructose intolerance, caused by mutations in the ALDOB gene, is an unusual cause of hypoglycemia. ALDOB encodes the enzyme aldolase B, responsible for the hydrolysis of fructose 1-phosphate in the liver. Here, we report the case of a 33-year-old female patient who consulted due to repetitive episodes of weakness, dizziness and headache after food ingestion. An ambulatory 72-h continuous glucose monitoring revealed multiple short hypoglycemic episodes over the day. After biochemical exclusion of other endocrine causes of hypoglycemia, hereditary fructose intolerance seemed a plausible diagnosis. Repeated measurements of urinary fructose revealed pathologic fructosuria, but genetic testing for the three most common mutations in ALDOB resulted negative. We decided to perform complete Sanger sequencing of the ALDOB gene and encountered a variant consisting of a T>A substitution in position 1963 of the ALDOB transcript (c.1693T>A). This position is located within the 3' untranslated region of exon 9, 515 nucleotides downstream the stop codon. After complete withdrawal of dietary fructose and sucrose, the patient presented no new hypoglycemic episodes.

5.
Diabetes Metab J ; 41(6): 466-473, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29199411

RESUMEN

BACKGROUND: Plasma concentrations of some lysophospholipids correlate with metabolic alterations in humans, but their potential as biomarkers of insulin resistance (IR) is insufficiently known. We aimed to explore the association between plasma linoleoylglycerophosphocholine (LGPC) and objective measures of IR in adults with different metabolic profiles. METHODS: We studied 62 men and women, ages 30 to 69 years, (29% normal weight, 59% overweight, 12% obese). Participants underwent a 5-point oral glucose tolerance test (5p-OGTT) from which we calculated multiple indices of IR and insulin secretion. Fifteen participants additionally underwent a hyperinsulinemic-euglycemic clamp for estimation of insulin-stimulated glucose disposal. Plasma LGPC was determined using high performance liquid chromatography/time-of-flight mass spectrometry. Plasma LGPC was compared across quartiles defined by the IR indices. RESULTS: Mean LGPC was 15.4±7.6 ng/mL in women and 14.1±7.3 ng/mL in men. LGPC did not correlate with body mass in-dex, percent body fat, waist circumference, blood pressure, glycosylated hemoglobin, log-triglycerides, or high density lipoprotein cholesterol. Plasma LGPC concentrations was not systematically associated with any of the studied 5p-OGTT-derived IR indices. However, LGPC exhibited a significant negative correlation with glucose disposal in the clamp (Spearman r=-0.56, P=0.029). Despite not being diabetic, participants with higher plasma LGPC exhibited significantly higher post-challenge plasma glucose excursions in the 5p-OGTT (P trend=0.021 for the increase in glucose area under the curve across quartiles of plasma LGPC). CONCLUSION: In our sample of Latino adults without known diabetes, LGPC showed potential as a biomarker of IR and impaired glucose metabolism.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA