Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biochemistry ; 55(21): 2914-26, 2016 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-27191789

RESUMEN

Synaptotagmin I (Syt I) is a vesicle-localized integral membrane protein that senses the calcium ion (Ca(2+)) influx to trigger fast synchronous release of neurotransmitter. How the cytosolic domains of Syt I allosterically communicate to propagate the Ca(2+) binding signal throughout the protein is not well understood. In particular, it is unclear whether the intrinsically disordered region (IDR) between Syt I's transmembrane helix and first C2 domain (C2A) plays an important role in allosteric modulation of Ca(2+) binding. Moreover, the structural propensity of this IDR with respect to membrane lipid composition is unknown. Using differential scanning and isothermal titration calorimetry, we found that inclusion of the IDR does indeed allosterically modulate Ca(2+) binding within the first C2 domain. Additionally through application of nuclear magnetic resonance, we found that Syt I's IDR interacts with membranes whose lipid composition mimics that of a synaptic vesicle. These findings not only indicate that Syt I's IDR plays a role in regulating Syt I's Ca(2+) sensing but also indicate the IDR is exquisitely sensitive to the underlying membrane lipids. The latter observation suggests the IDR is a key route for communication of lipid organization to the adjacent C2 domains.


Asunto(s)
Calcio/metabolismo , Lípidos/química , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/química , Sinaptotagmina I/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Rastreo Diferencial de Calorimetría , Dicroismo Circular , Humanos , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Transmisión Sináptica , Vesículas Sinápticas/química
2.
Biochim Biophys Acta ; 1838(9): 2331-40, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24657395

RESUMEN

Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova.


Asunto(s)
Membrana Celular/química , Membrana Dobles de Lípidos/química , Lípidos/química , Proteínas de la Membrana/química , Rastreo Diferencial de Calorimetría , Membrana Celular/metabolismo , Humanos , Mastocitos/química , Microdominios de Membrana/química , Fosfatidilcolinas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Transducción de Señal
3.
Biophys J ; 104(11): 2437-47, 2013 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-23746516

RESUMEN

Isothermal titration calorimetry was used to characterize the binding of calcium ion (Ca²âº) and phospholipid to the peripheral membrane-binding protein annexin a5. The phospholipid was a binary mixture of a neutral and an acidic phospholipid, specifically phosphatidylcholine and phosphatidylserine in the form of large unilamellar vesicles. To stringently define the mode of binding, a global fit of data collected in the presence and absence of membrane concentrations exceeding protein saturation was performed. A partition function defined the contribution of all heat-evolving or heat-absorbing binding states. We find that annexin a5 binds Ca²âº in solution according to a simple independent-site model (solution-state affinity). In the presence of phosphatidylserine-containing liposomes, binding of Ca²âº differentiates into two classes of sites, both of which have higher affinity compared with the solution-state affinity. As in the solution-state scenario, the sites within each class were described with an independent-site model. Transitioning from a solution state with lower Ca²âº affinity to a membrane-associated, higher Ca²âº affinity state, results in cooperative binding. We discuss how weak membrane association of annexin a5 prior to Ca²âº influx is the basis for the cooperative response of annexin a5 toward Ca²âº, and the role of membrane organization in this response.


Asunto(s)
Anexina A5/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo , Modelos Biológicos , Membrana Celular/química , Lípidos de la Membrana/química , Lípidos de la Membrana/metabolismo , Unión Proteica
4.
J Mol Biol ; 431(11): 2112-2126, 2019 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-31004665

RESUMEN

Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X-ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. We find that while dysferlin C2A binds membranes in a Ca2+-dependent manner, Ca2+ binding was the rate-limiting kinetic step for this interaction. Myoferlin C2A, on the other hand, binds two calcium ions with an affinity 3-fold lower than that of dysferlin C2A; and, surprisingly, myoferlin C2A binds only marginally to phospholipid mixtures with a high fraction of phosphatidylserine.


Asunto(s)
Proteínas de Unión al Calcio/química , Disferlina/química , Proteínas de la Membrana/química , Proteínas Musculares/química , Sitios de Unión , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/metabolismo , Cristalografía por Rayos X , Disferlina/metabolismo , Humanos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Musculares/metabolismo , Unión Proteica , Dominios Proteicos
5.
Sci Rep ; 8(1): 10949, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-30026467

RESUMEN

Ferlin proteins participate in such diverse biological events as vesicle fusion in C. elegans, fusion of myoblast membranes to form myotubes, Ca2+-sensing during exocytosis in the hair cells of the inner ear, and Ca2+-dependent membrane repair in skeletal muscle cells. Ferlins are Ca2+-dependent, phospholipid-binding, multi-C2 domain-containing proteins with a single transmembrane helix that spans a vesicle membrane. The overall domain composition of the ferlins resembles the proteins involved in exocytosis; therefore, it is thought that they participate in membrane fusion at some level. But if ferlins do fuse membranes, then they are distinct from other known fusion proteins. Here we show that the central FerA domain from dysferlin, myoferlin, and otoferlin is a novel four-helix bundle fold with its own Ca2+-dependent phospholipid-binding activity. Small-angle X-ray scattering (SAXS), spectroscopic, and thermodynamic analysis of the dysferlin, myoferlin, and otoferlin FerA domains, in addition to clinically-defined dysferlin FerA mutations, suggests that the FerA domain interacts with the membrane and that this interaction is enhanced by the presence of Ca2+.


Asunto(s)
Proteínas de Unión al Calcio/química , Calcio/metabolismo , Membrana Celular/metabolismo , Disferlina/química , Proteínas de la Membrana/química , Proteínas Musculares/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Dicroismo Circular , Disferlina/genética , Disferlina/metabolismo , Humanos , Fusión de Membrana , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Mutación , Dominios Proteicos , Estructura Secundaria de Proteína , Dispersión del Ángulo Pequeño , Termodinámica , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA