Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 79(2): 221-233.e5, 2020 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-32603710

RESUMEN

Cas9 is a prokaryotic RNA-guided DNA endonuclease that binds substrates tightly in vitro but turns over rapidly when used to manipulate genomes in eukaryotic cells. Little is known about the factors responsible for dislodging Cas9 or how they influence genome engineering. Unbiased detection through proximity labeling of transient protein interactions in cell-free Xenopus laevis egg extract identified the dimeric histone chaperone facilitates chromatin transcription (FACT) as an interactor of substrate-bound Cas9. FACT is both necessary and sufficient to displace dCas9, and FACT immunodepletion converts Cas9's activity from multi-turnover to single turnover. In human cells, FACT depletion extends dCas9 residence times, delays genome editing, and alters the balance between indel formation and homology-directed repair. FACT knockdown also increases epigenetic marking by dCas9-based transcriptional effectors with a concomitant enhancement of transcriptional modulation. FACT thus shapes the intrinsic cellular response to Cas9-based genome manipulation most likely by determining Cas9 residence times.


Asunto(s)
Proteína 9 Asociada a CRISPR/metabolismo , Proteínas de Unión al ADN/metabolismo , Genoma Humano , Proteínas del Grupo de Alta Movilidad/metabolismo , Factores de Elongación Transcripcional/metabolismo , Animales , Proteínas Asociadas a CRISPR/metabolismo , Línea Celular , ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN , Epigénesis Genética , Edición Génica , Técnicas de Silenciamiento del Gen , Humanos , Nucleosomas/metabolismo , Xenopus laevis
2.
J Infect Dis ; 223(4): 667-672, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-32623457

RESUMEN

Measles virus (MeV) binds, infects, and kills CD150+ memory T cells, leading to immune amnesia. Whether MeV targets innate, memory-like T cells is unknown. We demonstrate that human peripheral blood and hepatic mucosa-associated invariant T (MAIT) cells and invariant natural killer T cells express surprisingly high levels of CD150, more than other lymphocyte subsets. Furthermore, exposing MAIT cells to MeV results in their efficient infection and rapid apoptosis. This constitutes the first report of direct MAIT cell infection by a viral pathogen. Given MAIT cells' antimicrobial properties, their elimination by MeV may contribute to measles-induced immunosuppression and heightened vulnerability to unrelated infections.


Asunto(s)
Apoptosis , Virus del Sarampión/fisiología , Células T Invariantes Asociadas a Mucosa/fisiología , Células T Invariantes Asociadas a Mucosa/virología , Femenino , Humanos , Interleucina-12/inmunología , Interleucina-18/inmunología , Leucocitos Mononucleares/inmunología , Masculino , Proteína Cofactora de Membrana/genética , Proteína Cofactora de Membrana/metabolismo , Células T Invariantes Asociadas a Mucosa/inmunología , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo
3.
Mediators Inflamm ; 2019: 3124745, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871427

RESUMEN

BACKGROUND AND AIMS: Ubiquitin-specific protease 18 (USP18) is involved in immunoregulation and response to interferon- (IFN-) based treatment in patients chronically infected with hepatitis C virus (HCV). We investigated whether and how its upregulation alters HCV infection. METHODS: Overexpression of wild-type (USP18 WT) or catalytically inactive mutant (USP18 C64S) USP18 was examined for effects on HCV replication in the absence and presence of IFNα or IFNλ using both the HCV-infective model and replicon cells. The IFN signaling pathway was assessed via STAT1 phosphorylation (western blot) and downstream ISG expression (real-time PCR). Mechanistic roles were sought by quantifying microRNA-122 levels and J6/JFH1 infectivity of Huh7.5 cells. RESULTS: We found that overexpression of either USP18 WT or USP18 C64S stimulated HCV production and blunted the anti-HCV effect of IFNα and IFNλ in the infective model but not in the replicon system. Overexpressed USP18 showed no effect on Jak/STAT signaling nor on microRNA-122 expression. However, USP18 upregulation markedly increased J6/JFH1 infectivity and promoted the expression of the key HCV entry factor CD81 on Huh7.5 cells. CONCLUSIONS: USP18 stimulates HCV production and blunts the effect of both type I and III IFNs by fostering a cellular environment characterized by upregulation of CD81, promoting virus entry and infectivity.


Asunto(s)
Hepacivirus/fisiología , Hepacivirus/patogenicidad , Ubiquitina Tiolesterasa/metabolismo , Proteasas Ubiquitina-Específicas/metabolismo , Línea Celular , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Plásmidos/genética , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Ubiquitina Tiolesterasa/genética , Proteasas Ubiquitina-Específicas/genética
5.
J Virol ; 91(10)2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28250131

RESUMEN

Measles virus (MeV) is a member of the family Paramixoviridae that causes a highly contagious respiratory disease but has emerged as a promising oncolytic platform. Previous studies of MeV entry focused on the identification of cellular receptors. However, the endocytic and trafficking pathways utilized during MeV entry remain poorly described. The contribution of each endocytic pathway has been examined in cells that express the MeV receptors SLAM (signaling lymphocyte-activating molecule) and PVRL4 (poliovirus receptor-like 4) (nectin-4). Recombinant MeVs expressing either firefly luciferase or green fluorescent protein together with a variety of inhibitors were used. The results showed that MeV uptake was dynamin independent in the Vero.hPVRL4, Vero.hSLAM, and PVRL4-positive MCF7 breast cancer cell lines. However, MeV infection was blocked by 5-(N-ethyl-N-propyl)amiloride (EIPA), the hallmark inhibitor of macropinocytosis, as well as inhibitors of actin polymerization. By using phalloidin staining, MeV entry was shown to induce actin rearrangements and the formation of membrane ruffles accompanied by transient elevated fluid uptake. Small interfering RNA (siRNA) knockdown of p21-activated kinase 1 (PAK1) demonstrated that MeV enters both Vero.hPVRL4 and Vero.hSLAM cells in a PAK1-independent manner using a macropinocytosis-like pathway. In contrast, MeV entry into MCF7 human breast cancer cells relied upon Rac1 and its effector PAK1 through a PVRL4-mediated macropinocytosis pathway. MeV entry into DLD-1 colon and HTB-20 breast cancer cells also appeared to use the same pathway. Overall, these findings provide new insight into the life cycle of MeV, which could lead to therapies that block virus entry or methods that improve the uptake of MeV by cancer cells during oncolytic therapy.IMPORTANCE In the past decades, measles virus (MeV) has emerged as a promising oncolytic platform. Previous studies concerning MeV entry focused mainly on the identification of putative receptors for MeV. Nectin-4 (PVRL4) was recently identified as the epithelial cell receptor for MeV. However, the specific endocytic and trafficking pathways utilized during MeV infections are poorly documented. In this study, we demonstrated that MeV enters host cells via a dynamin-independent and actin-dependent endocytic pathway. Moreover, we show that MeV gains entry into MCF7, DLD-1, and HTB-20 cancer cells through a PVRL4-mediated macropinocytosis pathway and identified the typical cellular GTPase and kinase involved. Our findings provide new insight into the life cycle of MeV, which may lead to the development of therapies that block the entry of the virus into the host cell or alternatively promote the uptake of oncolytic MeV into cancer cells.


Asunto(s)
Moléculas de Adhesión Celular/metabolismo , Virus del Sarampión/fisiología , Pinocitosis , Internalización del Virus , Actinas/metabolismo , Amilorida/análogos & derivados , Amilorida/farmacología , Animales , Neoplasias de la Mama , Línea Celular , Chlorocebus aethiops , Neoplasias del Colon , Células Epiteliales/virología , Femenino , Humanos , Células MCF-7 , Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/genética , Virus Oncolíticos/fisiología , Pinocitosis/efectos de los fármacos , ARN Interferente Pequeño/genética , Células Vero , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo
6.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28904193

RESUMEN

The inhibitors carbobenzoxy (Z)-d-Phe-l-Phe-Gly (fusion inhibitor peptide [FIP]) and 4-nitro-2-phenylacetyl amino-benzamide (AS-48) have similar efficacies in blocking membrane fusion and syncytium formation mediated by measles virus (MeV). Other homologues, such as Z-d-Phe, are less effective but may act through the same mechanism. In an attempt to map the site of action of these inhibitors, we generated mutant viruses that were resistant to the inhibitory effects of Z-d-Phe-l-Phe-Gly. These 10 mutations were localized to the heptad repeat B (HRB) region of the fusion protein, and no changes were observed in the viral hemagglutinin, which is the receptor attachment protein. Mutations were validated in a luciferase-based membrane fusion assay, using transfected fusion and hemagglutinin expression plasmids or with syncytium-based assays in Vero, Vero-SLAM, and Vero-Nectin 4 cell lines. The changes I452T, D458N, D458G/V459A, N462K, N462H, G464E, and I483R conferred resistance to both FIP and AS-48 without compromising membrane fusion. The inhibitors did not block hemagglutinin protein-mediated binding to the target cell. Edmonston vaccine/laboratory and IC323 wild-type strains were equally affected by the inhibitors. Escape mutations were mapped upon a three-dimensional (3D) structure modeled from the published crystal structure of parainfluenzavirus 5 fusion protein. The most effective mutations were situated in a region located near the base of the globular head and its junction with the alpha-helical stalk of the prefusion protein. We hypothesize that the fusion inhibitors could interfere with the structural changes that occur between the prefusion and postfusion conformations of the fusion protein.IMPORTANCE Due to lapses in vaccination worldwide that have caused localized outbreaks, measles virus (MeV) has regained importance as a pathogen. Antiviral agents against measles virus are not commercially available but could be useful in conjunction with MeV eradication vaccine programs and as a safeguard in oncolytic viral therapy. Three decades ago, the small hydrophobic peptide Z-d-Phe-l-Phe-Gly (FIP) was shown to block MeV infections and syncytium formation in monkey kidney cell lines. The exact mechanism of its action has yet to be determined, but it does appear to have properties similar to those of another chemical inhibitor, AS-48, which appears to interfere with the conformational change in the viral F protein that is required to elicit membrane fusion. Escape mutations were used to map the site of action for FIP. Knowledge gained from these studies could help in the design of new inhibitors against morbilliviruses and provide additional knowledge concerning the mechanism of virus-mediated membrane fusion.


Asunto(s)
Virus del Sarampión/efectos de los fármacos , Virus del Sarampión/genética , Mutación , Oligopéptidos/farmacología , Proteínas Virales de Fusión/genética , Proteínas Virales de Fusión/metabolismo , Animales , Antivirales/farmacología , Benzamidas/farmacología , Chlorocebus aethiops , Hemaglutininas Virales/genética , Hemaglutininas Virales/metabolismo , Fusión de Membrana/efectos de los fármacos , Modelos Moleculares , Unión Proteica , Células Vero , Proteínas Virales de Fusión/química , Internalización del Virus/efectos de los fármacos
7.
Gut ; 66(10): 1853-1861, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27436270

RESUMEN

OBJECTIVE: Silibinin is a flavonolignan that is well established for its robust antiviral activity against HCV infection and has undergone several clinical trials for the management of hepatitis C. Despite its potency, silibinin suffers from poor solubility and bioavailability, restricting its clinical use. To overcome this limitation, we developed highly bioavailable silibinin nanoparticles (SB-NPs) and evaluated their efficiency against HCV infection. DESIGN: SB-NPs were prepared using a nanoemulsification technique and were physicochemically characterised. Infectious HCV culture systems were used to evaluate the influence of SB-NP on the virus life cycle and examine their antioxidant activity against HCV-induced oxidative stress. The safety profiles of SB-NP, in vivo pharmacokinetic studies and antiviral activity against infection of primary human hepatocytes were also assessed. RESULTS: SB-NP consisted of nanoscale spherical particles (<200 nm) encapsulating amorphous silibinin at >97% efficiency and increasing the compound's solubility by >75%. Treatment with SB-NP efficiently restricted HCV cell-to-cell transmission, suggesting that they retained silibinin's robust anti-HCV activity. In addition, SB-NP exerted an antioxidant effect via their free radical scavenging function. Oral administration of SB-NP in rodents produced no apparent in vivo toxicity, and pharmacokinetic studies revealed an enhanced serum level and superior biodistribution to the liver compared with non-modified silibinin. Finally, SB-NP efficiently reduced HCV infection of primary human hepatocytes. CONCLUSIONS: Due to SB-NP's enhanced bioavailability, effective anti-HCV activity and an overall hepatoprotective effect, we suggest that SB-NP may be a cost-effective anti-HCV agent that merits further evaluation for the treatment of hepatitis C.


Asunto(s)
Antioxidantes/farmacología , Hepacivirus/efectos de los fármacos , Silimarina/farmacología , Animales , Antioxidantes/administración & dosificación , Antioxidantes/farmacocinética , Células Cultivadas , Sistemas de Liberación de Medicamentos , Hepacivirus/patogenicidad , Hepatocitos/virología , Humanos , Estadios del Ciclo de Vida/efectos de los fármacos , Masculino , Nanosferas , Ratas , Silibina , Silimarina/administración & dosificación , Silimarina/farmacocinética
8.
PLoS Genet ; 10(6): e1004358, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945837

RESUMEN

Eukaryotic cells must inhibit re-initiation of DNA replication at each of the thousands of origins in their genome because re-initiation can generate genomic alterations with extraordinary frequency. To minimize the probability of re-initiation from so many origins, cells use a battery of regulatory mechanisms that reduce the activity of replication initiation proteins. Given the global nature of these mechanisms, it has been presumed that all origins are inhibited identically. However, origins re-initiate with diverse efficiencies when these mechanisms are disabled, and this diversity cannot be explained by differences in the efficiency or timing of origin initiation during normal S phase replication. This observation raises the possibility of an additional layer of replication control that can differentially regulate re-initiation at distinct origins. We have identified novel genetic elements that are necessary for preferential re-initiation of two origins and sufficient to confer preferential re-initiation on heterologous origins when the control of re-initiation is partially deregulated. The elements do not enhance the S phase timing or efficiency of adjacent origins and thus are specifically acting as re-initiation promoters (RIPs). We have mapped the two RIPs to ∼ 60 bp AT rich sequences that act in a distance- and sequence-dependent manner. During the induction of re-replication, Mcm2-7 reassociates both with origins that preferentially re-initiate and origins that do not, suggesting that the RIP elements can overcome a block to re-initiation imposed after Mcm2-7 associates with origins. Our findings identify a local level of control in the block to re-initiation. This local control creates a complex genomic landscape of re-replication potential that is revealed when global mechanisms preventing re-replication are compromised. Hence, if re-replication does contribute to genomic alterations, as has been speculated for cancer cells, some regions of the genome may be more susceptible to these alterations than others.


Asunto(s)
Replicación del ADN/genética , ADN de Hongos/biosíntesis , Regiones Promotoras Genéticas/genética , Saccharomyces cerevisiae/genética , Proteínas de Ciclo Celular/biosíntesis , Proteínas de Ciclo Celular/genética , Quinasas Ciclina-Dependientes/metabolismo , Variación Genética , Genoma Fúngico , Proteínas de Mantenimiento de Minicromosoma/genética , Origen de Réplica/genética , Fase S/genética , Proteínas de Saccharomyces cerevisiae/biosíntesis
9.
J Hepatol ; 62(3): 541-8, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25450204

RESUMEN

BACKGROUND & AIMS: A vaccine against hepatitis C virus (HCV) is unavailable and cost-effective antivirals that prevent HCV infection and re-infection, such as in the transplant setting, do not exist. In a search for novel and economical prophylactic agents, we examined the antiviral activity of saikosaponins (SSa, SSb2, SSc, and SSd) from Bupleurum kaoi root (BK) as entry inhibitors against HCV infection. METHODS: Infectious HCV culture systems were used to examine the effect of saikosaponins on the complete virus life cycle (entry, RNA replication/translation, and particle production). Antiviral activity against various HCV genotypes, clinical isolates, and infection of primary human hepatocytes were also evaluated. RESULTS: BK and the saikosaponins potently inhibited HCV infection at non-cytotoxic concentrations. These natural agents targeted early steps of the viral life cycle, while leaving replication/translation, egress, and spread relatively unaffected. In particular, we identified SSb2 as an efficient inhibitor of early HCV entry, including neutralization of virus particles, preventing viral attachment, and inhibiting viral entry/fusion. Binding analysis, using soluble viral glycoproteins, demonstrated that SSb2 acted on HCV E2. Moreover, SSb2 inhibited infection by several genotypic strains and prevented binding of serum-derived HCV onto hepatoma cells. Finally, treatment with the compound blocked HCV infection of primary human hepatocytes. CONCLUSIONS: Due to its potency, SSb2 may be of value for development as an antagonist of HCV entry and could be explored as prophylactic treatment during the course of liver transplantation.


Asunto(s)
Antivirales/farmacología , Hepacivirus/efectos de los fármacos , Hepacivirus/fisiología , Ácido Oleanólico/análogos & derivados , Saponinas/farmacología , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Antivirales/toxicidad , Bupleurum , Línea Celular , Hepatitis C/prevención & control , Hepatocitos/efectos de los fármacos , Hepatocitos/virología , Humanos , Trasplante de Hígado , Masculino , Ácido Oleanólico/aislamiento & purificación , Ácido Oleanólico/farmacología , Ácido Oleanólico/toxicidad , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/farmacología , Ratas , Ratas Sprague-Dawley , Saponinas/aislamiento & purificación , Saponinas/toxicidad , Virión/efectos de los fármacos , Replicación Viral/efectos de los fármacos
10.
PLoS Pathog ; 7(8): e1002240, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21901103

RESUMEN

Vaccine and laboratory adapted strains of measles virus can use CD46 as a receptor to infect many human cell lines. However, wild type isolates of measles virus cannot use CD46, and they infect activated lymphocytes, dendritic cells, and macrophages via the receptor CD150/SLAM. Wild type virus can also infect epithelial cells of the respiratory tract through an unidentified receptor. We demonstrate that wild type measles virus infects primary airway epithelial cells grown in fetal calf serum and many adenocarcinoma cell lines of the lung, breast, and colon. Transfection of non-infectable adenocarcinoma cell lines with an expression vector encoding CD150/SLAM rendered them susceptible to measles virus, indicating that they were virus replication competent, but lacked a receptor for virus attachment and entry. Microarray analysis of susceptible versus non-susceptible cell lines was performed, and comparison of membrane protein gene transcripts produced a list of 11 candidate receptors. Of these, only the human tumor cell marker PVRL4 (Nectin 4) rendered cells amenable to measles virus infections. Flow cytometry confirmed that PVRL4 is highly expressed on the surfaces of susceptible lung, breast, and colon adenocarcinoma cell lines. Measles virus preferentially infected adenocarcinoma cell lines from the apical surface, although basolateral infection was observed with reduced kinetics. Confocal immune fluorescence microscopy and surface biotinylation experiments revealed that PVRL4 was expressed on both the apical and basolateral surfaces of these cell lines. Antibodies and siRNA directed against PVRL4 were able to block measles virus infections in MCF7 and NCI-H358 cancer cells. A virus binding assay indicated that PVRL4 was a bona fide receptor that supported virus attachment to the host cell. Several strains of measles virus were also shown to use PVRL4 as a receptor. Measles virus infection reduced PVRL4 surface expression in MCF7 cells, a property that is characteristic of receptor-associated viral infections.


Asunto(s)
Biomarcadores de Tumor/inmunología , Moléculas de Adhesión Celular/metabolismo , Células Epiteliales/metabolismo , Virus del Sarampión/patogenicidad , Receptores Virales/metabolismo , Animales , Moléculas de Adhesión Celular/genética , Línea Celular , Células Dendríticas/inmunología , Células Dendríticas/virología , Regulación hacia Abajo , Células Epiteliales/citología , Regulación de la Expresión Génica , Humanos , Linfocitos/inmunología , Linfocitos/virología , Virus del Sarampión/inmunología , Ratones , Análisis por Micromatrices , Microscopía Confocal/métodos , ARN Interferente Pequeño/metabolismo , Acoplamiento Viral , Replicación Viral
11.
BMC Microbiol ; 13: 187, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23924316

RESUMEN

BACKGROUND: We previously identified two hydrolyzable tannins, chebulagic acid (CHLA) and punicalagin (PUG) that blocked herpes simplex virus type 1 (HSV-1) entry and spread. These compounds inhibited viral glycoprotein interactions with cell surface glycosaminoglycans (GAGs). Based on this property, we evaluated their antiviral efficacy against several different viruses known to employ GAGs for host cell entry. RESULTS: Extensive analysis of the tannins' mechanism of action was performed on a panel of viruses during the attachment and entry steps of infection. Virus-specific binding assays and the analysis of viral spread during treatment with these compounds were also conducted. CHLA and PUG were effective in abrogating infection by human cytomegalovirus (HCMV), hepatitis C virus (HCV), dengue virus (DENV), measles virus (MV), and respiratory syncytial virus (RSV), at µM concentrations and in dose-dependent manners without significant cytotoxicity. Moreover, the natural compounds inhibited viral attachment, penetration, and spread, to different degrees for each virus. Specifically, the tannins blocked all these steps of infection for HCMV, HCV, and MV, but had little effect on the post-fusion spread of DENV and RSV, which could suggest intriguing differences in the roles of GAG-interactions for these viruses. CONCLUSIONS: CHLA and PUG may be of value as broad-spectrum antivirals for limiting emerging/recurring viruses known to engage host cell GAGs for entry. Further studies testing the efficacy of these tannins in vivo against certain viruses are justified.


Asunto(s)
Antivirales/farmacología , Benzopiranos/farmacología , Glucósidos/farmacología , Glicosaminoglicanos/metabolismo , Taninos Hidrolizables/farmacología , Receptores Virales/metabolismo , Virosis/virología , Internalización del Virus/efectos de los fármacos , Virus/efectos de los fármacos , Animales , Línea Celular , Relación Dosis-Respuesta a Droga , Humanos , Virosis/metabolismo , Fenómenos Fisiológicos de los Virus/efectos de los fármacos
12.
J Biomol Struct Dyn ; : 1-15, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38115191

RESUMEN

The omicron (B.1.19) variant of contagious severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is considered a variant of concern (VOC) due to its increased transmissibility and highly infectious nature. The spike receptor-binding domain (RBD) is a hotspot of mutations and is regarded as a prominent target for screening drug candidates owing to its crucial role in viral entry and immune evasion. To date, no effective therapy or antivirals have been reported; therefore, there is an urgent need for rapid screening of antivirals. An extensive molecular modelling study has been performed with the primary goal to assess the inhibition potential of natural flavonoids as inhibitors against RBD from a manually curated library. Out of 40 natural flavonoids, five natural flavonoids, namely tomentin A (-8.7 kcal/mol), tomentin C (-8.6 kcal/mol), hyperoside (-8.4 kcal/mol), catechin gallate (-8.3 kcal/mol), and corylifol A (-8.2 kcal/mol), have been considered as the top-ranked compounds based on their binding affinity and molecular interaction profiling. The state-of-the-art molecular dynamics (MD) simulations of these top-ranked compounds in complex with RBD exhibited stable dynamics and structural compactness patterns on 200 nanoseconds. Additionally, complexes of these molecules demonstrated favorable free binding energies and affirmed the docking and simulation results. Moreover, the post-simulation validation of these interacted flavonoids using principal component analysis (PCA) revealed stable interaction patterns with RBD. The integrated results suggest that tomentin A, tomentin C, hyperoside, catechin gallate, and corylifol A might be effective against the emerging variants of SARS-CoV-2 and should be further evaluated using in-vitro and in-vivo experiments.Communicated by Ramaswamy H. Sarma.

13.
J Virol ; 85(5): 2342-50, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21177824

RESUMEN

MicroRNA 122 (miR-122) increases the accumulation and translation of hepatitis C virus (HCV) RNA in infected cells through direct interactions with homologous sequences in the 5' untranslated region (UTR) of the HCV genome. Argonaute 2 (Ago2) is a component of the RNA-induced silencing complex (RISC) and mediates small interfering RNA (siRNA)-directed mRNA cleavage and microRNA translational suppression. We investigated the function of Ago2 in HCV replication to determine whether it plays a role in enhancing the synthesis and translation of HCV RNA that is associated with miR-122. siRNA-mediated depletion of Ago2 in human hepatoma cells reduced HCV RNA accumulation in transient HCV replication assays. The treatment did not adversely affect cell viability, as assessed by cell proliferation, capped translation, and interferon assays. These data are consistent with complementary roles for Ago2 and miR-122 in enhancing HCV RNA amplification. By using a transient HCV replication assay that is dependent on an exogenously provided mutant miR-122, we determined that Ago2 depletion still reduced luciferase expression and HCV RNA accumulation, independently of miR-122 biogenesis. miR-122 has previously been found to stimulate HCV translation. Similarly, Ago2 knockdown also reduced HCV translation, and its depletion reduced the ability of miR-122 to stimulate viral translation. These data suggest a direct role for Ago2 in miR-122-mediated translation. Finally, Ago2 was also necessary for efficient miR-122 enhancement of HCV RNA accumulation. These data support a model in which miR-122 functions within an Ago2-containing protein complex to augment both HCV RNA accumulation and translation.


Asunto(s)
Factor 2 Eucariótico de Iniciación/metabolismo , Hepacivirus/fisiología , Hepatitis C/metabolismo , MicroARNs/metabolismo , Biosíntesis de Proteínas , ARN Viral/metabolismo , Proteínas Argonautas , Secuencia de Bases , Línea Celular Tumoral , Factor 2 Eucariótico de Iniciación/genética , Regulación Viral de la Expresión Génica , Hepacivirus/genética , Hepatitis C/genética , Hepatitis C/virología , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , ARN Viral/genética , Replicación Viral
14.
J Virol ; 85(9): 4386-98, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21307190

RESUMEN

Herpes simplex virus 1 (HSV-1) is a common human pathogen that causes lifelong latent infection of sensory neurons. Non-nucleoside inhibitors that can limit HSV-1 recurrence are particularly useful in treating immunocompromised individuals or cases of emerging acyclovir-resistant strains of herpesvirus. We report that chebulagic acid (CHLA) and punicalagin (PUG), two hydrolyzable tannins isolated from the dried fruits of Terminalia chebula Retz. (Combretaceae), inhibit HSV-1 entry at noncytotoxic doses in A549 human lung cells. Experiments revealed that both tannins targeted and inactivated HSV-1 viral particles and could prevent binding, penetration, and cell-to-cell spread, as well as secondary infection. The antiviral effect from either of the tannins was not associated with induction of type I interferon-mediated responses, nor was pretreatment of the host cell protective against HSV-1. Their inhibitory activities targeted HSV-1 glycoproteins since both natural compounds were able to block polykaryocyte formation mediated by expression of recombinant viral glycoproteins involved in attachment and membrane fusion. Our results indicated that CHLA and PUG blocked interactions between cell surface glycosaminoglycans and HSV-1 glycoproteins. Furthermore, the antiviral activities from the two tannins were significantly diminished in mutant cell lines unable to produce heparan sulfate and chondroitin sulfate and could be rescued upon reconstitution of heparan sulfate biosynthesis. We suggest that the hydrolyzable tannins CHLA and PUG may be useful as competitors for glycosaminoglycans in the management of HSV-1 infections and that they may help reduce the risk for development of viral drug resistance during therapy with nucleoside analogues.


Asunto(s)
Antivirales/metabolismo , Glicoproteínas/antagonistas & inhibidores , Glicosaminoglicanos/antagonistas & inhibidores , Herpesvirus Humano 1/efectos de los fármacos , Taninos Hidrolizables/metabolismo , Proteínas Virales/antagonistas & inhibidores , Internalización del Virus/efectos de los fármacos , Animales , Antivirales/aislamiento & purificación , Benzopiranos/aislamiento & purificación , Benzopiranos/metabolismo , Línea Celular , Chlorocebus aethiops , Glucósidos/aislamiento & purificación , Glucósidos/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Taninos Hidrolizables/aislamiento & purificación , Pruebas de Sensibilidad Microbiana , Terminalia/química , Ensayo de Placa Viral , Inactivación de Virus
15.
Front Mol Biosci ; 9: 898874, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35620478

RESUMEN

The ongoing pandemic coronavirus disease (COVID-19) caused by a novel corona virus, namely, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), has had a major impact on global public health. COVID-19 cases continue to increase across the globe with high mortality rates in immunocompromised patients. There is still a pressing demand for drug discovery and vaccine development against this highly contagious disease. To design and develop antiviral drugs against COVID-19, the main protease (Mpro) has emerged as one of the important drug targets. In this context, the present work explored Jadwar (Delphinium denudatum)-derived natural alkaloids as potential inhibitors against Mpro of SARS-CoV-2 by employing a combination of molecular docking and molecular dynamic simulation-based methods. Molecular docking and interaction profile analysis revealed strong binding on the Mpro functional domain with four natural alkaloids viz. panicutine (-7.4 kcal/mol), vilmorrianone (-7.0 kcal/mol), denudatine (-6.0 kcal/mol), and condelphine (-5.9 kcal/mol). The molecular docking results evaluated by using the MD simulations on 200 nanoseconds confirmed highly stable interactions of these compounds with the Mpro. Additionally, mechanics/generalized Born/Poisson-Boltzmann surface area (MM/G/P/BSA) free energy calculations also affirmed the docking results. Natural alkaloids explored in the present study possess the essential drug-likeness properties, namely, absorption, distribution, metabolism, and excretion (ADME), and are in accordance with Lipinski's rule of five. The results of this study suggest that these four bioactive molecules, namely, condelphine, denudatine, panicutine, and vilmorrianone, might be effective candidates against COVID-19 and can be further investigated using a number of experimental methods.

16.
Alzheimers Dement (N Y) ; 8(1): e12283, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35415204

RESUMEN

Introduction: Alzheimer's disease (AD) is characterized by neurotoxic immuno-inflammation concomitant with cytotoxic oligomerization of amyloid beta (Aß) and tau, culminating in concurrent, interdependent immunopathic and proteopathic pathogeneses. Methods: We performed a comprehensive series of in silico, in vitro, and in vivo studies explicitly evaluating the atomistic-molecular mechanisms of cytokine-mediated and Aß-mediated neurotoxicities in AD.  Next, 471 new chemical entities were designed and synthesized to probe the pathways identified by these molecular mechanism studies and to provide prototypic starting points in the development of small-molecule therapeutics for AD. Results: In response to various stimuli (e.g., infection, trauma, ischemia, air pollution, depression), Aß is released as an early responder immunopeptide triggering an innate immunity cascade in which Aß exhibits both immunomodulatory and antimicrobial properties (whether bacteria are present, or not), resulting in a misdirected attack upon "self" neurons, arising from analogous electronegative surface topologies between neurons and bacteria, and rendering them similarly susceptible to membrane-penetrating attack by antimicrobial peptides (AMPs) such as Aß. After this self-attack, the resulting necrotic (but not apoptotic) neuronal breakdown products diffuse to adjacent neurons eliciting further release of Aß, leading to a chronic self-perpetuating autoimmune cycle.  AD thus emerges as a brain-centric autoimmune disorder of innate immunity. Based upon the hypothesis that autoimmune processes are susceptible to endogenous regulatory processes, a subsequent comprehensive screening program of 1137 small molecules normally present in human brain identified tryptophan metabolism as a regulator of brain innate immunity and a source of potential endogenous anti-AD molecules capable of chemical modification into multi-site therapeutic modulators targeting AD's complex immunopathic-proteopathic pathogenesis. Discussion:  Conceptualizing AD as an autoimmune disease, identifying endogenous regulators of this autoimmunity, and designing small molecule drug-like analogues of these endogenous regulators represents a novel therapeutic approach for AD.

17.
J Virol ; 84(6): 3033-42, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20042501

RESUMEN

Recent studies of primate models suggest that wild-type measles virus (MV) infects immune cells located in the airways before spreading systemically, but the identity of these cells is unknown. To identify cells supporting primary MV infection, we took advantage of mice expressing the MV receptor human signaling lymphocyte activation molecule (SLAM, CD150) with human-like tissue specificity. We infected these mice intranasally (IN) with a wild-type MV expressing green fluorescent protein. One, two, or three days after inoculation, nasal-associated lymphoid tissue (NALT), the lungs, several lymph nodes (LNs), the spleen, and the thymus were collected and analyzed by microscopy and flow cytometry, and virus isolation was attempted. One day after inoculation, MV replication was documented only in the airways, in about 2.5% of alveolar macrophages (AM) and 0.5% of dendritic cells (DC). These cells expressed human SLAM, and it was observed that MV infection temporarily enhanced SLAM expression. Later, MV infected other immune cell types, including B and T lymphocytes. Virus was isolated from lymphatic tissue as early as 2 days post-IN inoculation; the mediastinal lymph node was an early site of replication and supported high levels of infection. Three days after intraperitoneal inoculation, 1 to 8% of the mediastinal LN cells were infected. Thus, MV infection of alveolar macrophages and subepithelial dendritic cells in the airways precedes infection of lymphocytes in lymphatic organs of mice expressing human SLAM with human-like tissue specificity.


Asunto(s)
Antígenos CD/inmunología , Células Dendríticas/virología , Tejido Linfoide/virología , Macrófagos Alveolares/virología , Virus del Sarampión/metabolismo , Sarampión/inmunología , Receptores de Superficie Celular/inmunología , Animales , Antígenos CD/genética , Células Dendríticas/metabolismo , Humanos , Pulmón/citología , Pulmón/inmunología , Pulmón/virología , Tejido Linfoide/metabolismo , Macrófagos Alveolares/metabolismo , Sarampión/patología , Virus del Sarampión/patogenicidad , Ratones , Ratones Transgénicos , Receptor de Interferón alfa y beta/genética , Receptor de Interferón alfa y beta/inmunología , Receptores de Superficie Celular/genética , Miembro 1 de la Familia de Moléculas Señalizadoras de la Activación Linfocitaria
18.
J Virol ; 84(18): 9170-80, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20592082

RESUMEN

Hepatitis C virus (HCV) infection causes significant morbidity, and efficient mouse models would greatly facilitate virus studies and the development of effective vaccines and new therapeutic agents. Entry factors, innate immunity, and host factors needed for viral replication represent the initial barriers that restrict HCV infection of mouse cells. Experiments in this paper consider early postentry steps of viral infection and investigate the roles of interferon regulatory factors (IRF-3 and IRF-9) and microRNA (miR-122) in promoting HCV replication in mouse embryo fibroblasts (MEFs) that contain viral subgenomic replicons. While wild-type murine fibroblasts are restricted for HCV RNA replication, deletion of IRF-3 alone can facilitate replicon activity in these cells. This effect is thought to be related to the inactivation of the type I interferon synthesis mediated by IRF-3. Additional deletion of IRF-9 to yield IRF-3(-/-) IRF-9(-/-) MEFs, which have blocked type I interferon signaling, did not increase HCV replication. Expression of liver-specific miR-122 in MEFs further stimulated the synthesis of HCV replicons in the rodent fibroblasts. The combined effects of miR-122 expression and deletion of IRF-3 produced a cooperative stimulation of HCV subgenome replication. miR-122 and IRF-3 are independent host factors that are capable of influencing HCV replication, and our findings could help to establish mouse models and other cell systems that support HCV growth and particle formation.


Asunto(s)
Fibroblastos/virología , Hepacivirus/inmunología , Hepacivirus/fisiología , Factor 3 Regulador del Interferón/deficiencia , MicroARNs/biosíntesis , Replicación Viral , Animales , Factor 3 Regulador del Interferón/inmunología , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/deficiencia , Subunidad gamma del Factor 3 de Genes Estimulados por el Interferón/inmunología , Ratones , Ratones Noqueados , Eliminación de Secuencia
19.
Cancers (Basel) ; 13(1)2021 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-33406633

RESUMEN

Oncolytic viruses (OVs) and phytochemical ursolic acid (UA) are two efficacious therapeutic candidates in development against breast cancer, the deadliest women's cancer worldwide. However, as single agents, OVs and UA have limited clinical efficacies. As a common strategy of enhancing monotherapeutic anticancer efficacy, we explored the combinatorial chemovirotherapeutic approach of combining oncolytic measles virus (MV), which targets the breast tumor marker Nectin-4, and the anticancer UA against breast adenocarcinoma. Our findings revealed that in vitro co-treatment with UA synergistically potentiated the killing of human breast cancer cells by oncolytic MV, without UA interfering the various steps of the viral infection. Mechanistic studies revealed that the synergistic outcome from the combined treatment was mediated through UA's potentiation of apoptotic killing by MV. To circumvent UA's poor solubility and bioavailability and strengthen its clinical applicability, we further developed UA nanoparticles (UA-NP) by nanoemulsification. Compared to the non-formulated UA, UA-NP exhibited improved drug dissolution property and similarly synergized with oncolytic MV in inducing apoptotic breast cancer cell death. This oncolytic potentiation was partly attributed to the enhanced autophagic flux induced by the UA-NP and MV combined treatment. Finally, the synergistic effect from the UA-NP and MV combination was also observed in BT-474 and MDA-MB-468 breast cancer cells. Our study thus highlights the potential value of oncolytic MV and UA-based chemovirotherapy for further development as a treatment strategy against breast cancer, and the feasibility of employing nanoformulation to enhance UA's applicability.

20.
J Infect Dev Ctries ; 15(5): 653-656, 2021 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-34106888

RESUMEN

Understanding the efficacy and durability of heterologous immunization schedules against SARS-CoV-2 is critical, as supply demands and vaccine choices become significant issues in the global vaccination strategy. Here we characterize the neutralizing antibodies produced in two subjects who received combination immunizations against SARS-CoV-2, first with Covishield (Oxford-AstraZeneca) vaccine, followed 33 days later with a second dose (booster) shot of the Pfizer-BioNTech vaccine. Serum samples were collected 25 days following the primary vaccination and 13 days after the secondary Pfizer vaccination. Both subjects exhibited increased levels of isotype IgG and IgM antibodies directed against the entire spike protein following immunizations. These antibodies also exhibited increased reactivity with the receptor binding domain (RBD) in the spike protein and neutralized the infectivity of replicating vesicular stomatitis virus (VSV) that contains the COVID-19 coronavirus S protein gene in place of its normal G glycoprotein. This VSV pseudovirus also contains the reporter gene for enhanced green fluorescent protein (eGFP). Antibody titers against the spike protein and serum neutralization titers against the reporter virus are reported for the 2 heterologous vaccinated individuals and compared to a positive control derived from a convalescent patient and a negative control from an unexposed individual. The Pfizer-BioNTech vaccine increased antibody binding to the spike protein and RBD, and approached levels found in the convalescent positive control. Neutralizing antibodies against the VSV-S pseudovirus in the 2 subjects also approached levels in the convalescent sera. These results firmly validate the value of the Pfizer-BioNTech vaccine in boosting immunity following initial Covishield inoculation.


Asunto(s)
Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Inmunidad Humoral/efectos de los fármacos , Anticuerpos Neutralizantes/inmunología , COVID-19/prevención & control , Estudios de Casos y Controles , Femenino , Humanos , Masculino , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA