Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Chemistry ; 30(51): e202401500, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-38954146

RESUMEN

A radical trapping method based on an SH2' homolytic substitution reaction was applied to study the mechanism of a photochemical spirocyclisation of indole-ynones in the presence of thiols. Starting material, products and a range of trapped radical intermediates were simultaneously detected in reaction mixtures by mass spectrometry (MS). The trapped intermediates included both initiating and main chain propagating radicals. These data made it possible to propose a self-initiation mechanism consistent with the originally postulated photoexcitation of an intramolecular electron donor-acceptor complex of the substrate. The effect of thiol structure on the MS peak intensity of the reaction components was rationalised in terms of the relative stability of the radical intermediates. The results were compared to a simpler related reaction, a photochemical thiol-ene addition where reagents, products and trapped intermediate radicals were also detected by MS. Relative MS peak intensities were again explained by a combination of electronic and steric effects on the stability of intermediate radicals. Overall, SH2' radical trapping was demonstrated to be a powerful experimental technique for providing mechanistic evidence on photochemical and other organic radical reactions.

2.
Chimia (Aarau) ; 78(3): 123-128, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38547013

RESUMEN

Two applications of a radical trap based on a homolytic substitution reaction (SH2') are presented for the trapping of short-lived radical intermediates in organic reactions. The first example is a photochemical cyanomethylation catalyzed by a Ru complex. Two intermediate radicals in the radical chain propagation have been trapped and detected using mass spectrometry (MS), along with the starting materials, products and catalyst degradation fragments. Although qualitative, these results helped to elucidate the reaction mechanism. In the second example, the trapping method was applied to study the radical initiation catalyzed by a triethylboronoxygen mixture. In this case, the concentration of trapped radicals was sufficiently high to enable their detection by nuclear magnetic resonance (NMR). Quantitative measurements made it possible to characterize the radical flux in the system under different reaction conditions (including variations of solvent, temperature and concentration) where modelling was complicated by chain reactions and heterogeneous mass transfer.

3.
J Am Chem Soc ; 144(35): 15969-15976, 2022 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-36001076

RESUMEN

We report a new general method for trapping short-lived radicals, based on a homolytic substitution reaction SH2'. This departure from conventional radical trapping by addition or radical-radical cross-coupling results in high sensitivity, detailed structural information, and general applicability of the new approach. The radical traps in this method are terminal alkenes possessing a nitroxide leaving group (e.g., allyl-TEMPO derivatives). The trapping process thus yields stable products which can be stored and subsequently analyzed by mass spectrometry (MS) supported by well-established techniques such as isotope exchange, tandem MS, and high-performance liquid chromatography-MS. The new method was applied to a range of model radical reactions in both liquid and gas phases including a photoredox-catalyzed thiol-ene reaction and alkene ozonolysis. An unprecedented range of radical intermediates was observed in complex reaction mixtures, offering new mechanistic insights. Gas-phase radicals can be detected at concentrations relevant to atmospheric chemistry.


Asunto(s)
Alquenos , Espectrometría de Masas en Tándem , Alquenos/química , Cromatografía Líquida de Alta Presión , Compuestos de Sulfhidrilo
4.
Faraday Discuss ; 226: 409-431, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33336656

RESUMEN

Rapid economic growth and development have exacerbated air quality problems across India, driven by many poorly understood pollution sources and understanding their relative importance remains critical to characterising the key drivers of air pollution. A comprehensive suite of measurements of 90 non-methane hydrocarbons (NMHCs) (C2-C14), including 12 speciated monoterpenes and higher molecular weight monoaromatics, were made at an urban site in Old Delhi during the pre-monsoon (28-May to 05-Jun 2018) and post-monsoon (11 to 27-Oct 2018) seasons using dual-channel gas chromatography (DC-GC-FID) and two-dimensional gas chromatography (GC×GC-FID). Significantly higher mixing ratios of NMHCs were measured during the post-monsoon campaign, with a mean night-time enhancement of around 6. Like with NOx and CO, strong diurnal profiles were observed for all NMHCs, except isoprene, with very high NMHC mixing ratios between 35-1485 ppbv. The sum of mixing ratios of benzene, toluene, ethylbenzene and xylenes (BTEX) routinely exceeded 100 ppbv at night during the post-monsoon period, with a maximum measured mixing ratio of monoaromatic species of 370 ppbv. The mixing ratio of highly reactive monoterpenes peaked at around 6 ppbv in the post-monsoon campaign and correlated strongly with anthropogenic NMHCs, suggesting a strong non-biogenic source in Delhi. A detailed source apportionment study was conducted which included regression analysis to CO, acetylene and other NMHCs, hierarchical cluster analysis, EPA UNMIX 6.0, principal component analysis/absolute principal component scores (PCA/APCS) and comparison with NMHC ratios (benzene/toluene and i-/n-pentane) in ambient samples to liquid and solid fuels. These analyses suggested the primary source of anthropogenic NMHCs in Delhi was from traffic emissions (petrol and diesel), with average mixing ratio contributions from Unmix and PCA/APCS models of 38% from petrol, 14% from diesel and 32% from liquified petroleum gas (LPG) with a smaller contribution (16%) from solid fuel combustion. Detailed consideration of the underlying meteorology during the campaigns showed that the extreme night-time mixing ratios of NMHCs during the post-monsoon campaign were the result of emissions into a very shallow and stagnant boundary layer. The results of this study suggest that despite widespread open burning in India, traffic-related petrol and diesel emissions remain the key drivers of gas-phase urban air pollution in Delhi.

5.
Environ Sci Technol ; 55(2): 842-853, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33410677

RESUMEN

The formation of isoprene nitrates (IsN) can lead to significant secondary organic aerosol (SOA) production and they can act as reservoirs of atmospheric nitrogen oxides. In this work, we estimate the rate of production of IsN from the reactions of isoprene with OH and NO3 radicals during the summertime in Beijing. While OH dominates the loss of isoprene during the day, NO3 plays an increasingly important role in the production of IsN from the early afternoon onwards. Unusually low NO concentrations during the afternoon resulted in NO3 mixing ratios of ca. 2 pptv at approximately 15:00, which we estimate to account for around a third of the total IsN production in the gas phase. Heterogeneous uptake of IsN produces nitrooxyorganosulfates (NOS). Two mono-nitrated NOS were correlated with particulate sulfate concentrations and appear to be formed from sequential NO3 and OH oxidation. Di- and tri-nitrated isoprene-related NOS, formed from multiple NO3 oxidation steps, peaked during the night. This work highlights that NO3 chemistry can play a key role in driving biogenic-anthropogenic interactive chemistry in Beijing with respect to the formation of IsN during both the day and night.


Asunto(s)
Hemiterpenos , Nitratos , Aerosoles/análisis , Beijing , Butadienos/análisis , Hemiterpenos/análisis , Nitratos/análisis
6.
Environ Sci Technol ; 54(13): 7798-7806, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479720

RESUMEN

Formic acid (HCOOH), one of the most important and ubiquitous organic acids in the Earth's atmosphere, contributes substantially to atmospheric acidity and affects pH-dependent reactions in the aqueous phase. However, based on the current mechanistic understanding, even the most advanced chemical models significantly underestimate the HCOOH concentrations when compared to ambient observations at both ground-level and high altitude, thus underrating its atmospheric impact. Here we reveal new chemical pathways to HCOOH formation from reactions of both O3 and OH with ketene-enols, which are important and to date undiscovered intermediates produced in the photo-oxidation of aromatics and furans. We highlight that the estimated yields of HCOOH from ketene-enol oxidation are up to 60% in polluted urban areas and greater than 30% even in the continental background. Our theoretical calculations are further supported by a chamber experiment evaluation. Considering that aromatic compounds are highly reactive and contribute ca. 10% to global nonmethane hydrocarbon emissions and 20% in urban areas, the new oxidation pathways presented here should help to narrow the budget gap of HCOOH and other small organic acids and can be relevant in any environment with high aromatic emissions, including urban areas and biomass burning plumes.


Asunto(s)
Atmósfera , Compuestos Orgánicos , Biomasa , Oxidación-Reducción
7.
Phys Chem Chem Phys ; 22(24): 13698-13706, 2020 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-32525165

RESUMEN

Criegee Intermediates (CI), formed in the ozonolysis of alkenes, play a central role in tropospheric chemistry as an important source of radicals, with stabilised CI (SCI) able to participate in bimolecular reactions, affecting climate through the formation of inorganic and organic aerosol. However, total SCI yields have only been determined for a few alkene systems, while speciated SCI yields from asymmetrical alkenes are almost entirely unknown. Here we report for the first time a systematic experimental exploration of the stabilisation of CH2OO and (CH3)2COO CI, formed from ten alkene-ozone systems with a range of different sizes and structures, under atmospherically relevant conditions in the EUPHORE chamber. Experiments in the presence of excess SO2 (an SCI scavenger) determined total SCI yields from each alkene-ozone system. Comparison of primary carbonyl yields in the presence/absence of SO2 determined the stabilisation fraction of a given CI. The results show that the stabilisation of a given CI increases as the size of the carbonyl co-product increases. This is interpreted in terms of the nascent population of CI formed following decomposition of the primary ozonide (POZ) having a lower mean energy distribution when formed with a larger carbonyl co-product, as more of the energy from the POZ is taken by the carbonyl. These findings have significant implications for atmospheric modelling of alkene ozonolysis. Higher stabilisation of small CI formed from large alkenes is expected to lead to lower radical yields from CI decomposition, and higher SCI concentrations, increasing the importance of SCI bimolecular reactions.

8.
Phys Chem Chem Phys ; 21(3): 1160-1171, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30620029

RESUMEN

Unsaturated 1,4-dicarbonyl compounds, such as 2-butenedial and 4-oxo-2-pentenal are produced in the atmospheric boundary layer from the oxidation of aromatic compounds and furans. These species are expected to undergo rapid photochemical processing, affecting atmospheric composition. In this study, the photochemistry of (E)-2-butenedial and both E and Z isomers of 4-oxo-2-pentenal was investigated under natural sunlight conditions at the large outdoor atmospheric simulation chamber EUPHORE. Photochemical loss rates, relative to j(NO2), are determined to be j((E)-2-butenedial)/j(NO2) = 0.14 (±0.02), j((E)-4-oxo-2-pentenal)/j(NO2) = 0.18 (±0.01), and j((Z)-4-oxo-2-pentenal)/j(NO2) = 0.20 (±0.03). The major products detected for both species are a furanone (30-42%) and, for (E)-2-butenedial, maleic anhydride (2,5-furandione) (12-14%). The mechanism appears to proceed predominantly via photoisomerization to a ketene-enol species following γ-H abstraction. The lifetimes of the ketene-enol species in the dark from 2-butenedial and 4-oxo-2-pentenal are determined to be 465 s and 235 s, respectively. The ketene-enol can undergo ring closure to yield the corresponding furanone, or further unimolecular rearrangement which can subsequently form maleic anhydride. A minor channel (10-15%) also appears to form CO directly. This is presumed to be via a molecular elimination route of an initial biradical intermediate formed in photolysis, with an unsaturated carbonyl (detected here but not quantified) as co-product. α-Dicarbonyl and radical yields are very low, which has implications for ozone production from the photo-oxidation of unsaturated 1,4-dicarbonyls in the boundary layer. Photochemical removal is determined to be the major loss process for these species in the boundary layer with lifetimes of the order of 10-15 minutes, compared to >3 hours for reaction with OH.

9.
Faraday Discuss ; 189: 105-20, 2016 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-27092375

RESUMEN

There is growing global consumption of non-fossil fuels such as ethanol made from renewable biomass. Previous studies have shown that one of the main air quality disadvantages of using ethanol blended fuels is a significant increase in the production of acetaldehyde, an unregulated and toxic pollutant. Most studies on the impacts of ethanol blended gasoline have been carried out in the US and Brazil, with much less focus on the UK and Europe. We report time resolved measurements of ethanol in London during the winter and summer of 2012. In both seasons the mean mixing ratio of ethanol was around 5 ppb, with maximum values over 30 ppb, making ethanol currently the most abundant VOC in London air. We identify a road transport related source, with 'rush-hour' peaks observed. Ethanol is strongly correlated with other road transport-related emissions, such as small aromatics and light alkanes, and has no relationship to summer biogenic emissions. To determine the impact of road transport-related ethanol emission on secondary species (i.e. acetaldehyde and ozone), we use both a chemically detailed box model (incorporating the Master Chemical Mechanism, MCM) and a global and nested regional scale chemical transport model (GEOS-Chem), on various processing time scales. Using the MCM model, only 16% of the modelled acetaldehyde was formed from ethanol oxidation. However, the model significantly underpredicts the total levels of acetaldehyde, indicating a missing primary emission source, that appears to be traffic-related. Further support for a primary emission source comes from the regional scale model simulations, where the observed concentrations of ethanol and acetaldehyde can only be reconciled with the inclusion of large primary emissions. Although only constrained by one set of observations, the regional modelling suggests a European ethanol source similar in magnitude to that of ethane (∼60 Gg per year) and greater than that of acetaldehyde (∼10 Gg per year). The increased concentrations of ethanol and acetaldehyde from primary emissions impacts both radical and NOx cycling over Europe, resulting in significant regional impacts on NOy speciation and O3 concentrations, with potential changes to human exposure to air pollutants.


Asunto(s)
Contaminación del Aire/análisis , Etanol/análisis , Acetaldehído/análisis , Cromatografía de Gases , Etanol/química , Modelos Lineales , Londres , Óxidos de Nitrógeno/análisis , Oxidación-Reducción , Ozono/análisis , Estaciones del Año
10.
Environ Sci Technol ; 49(22): 13168-78, 2015 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-26473383

RESUMEN

Secondary organic aerosol (SOA) is well-known to have adverse effects on air quality and human health. However, the dynamic mechanisms occurring during SOA formation and evolution are poorly understood. The time-resolved SOA composition formed during the photo-oxidation of three aromatic compounds, methyl chavicol, toluene and 4-methyl catechol, were investigated at the European Photoreactor. SOA was collected using a particle into liquid sampler and analyzed offline using state-of-the-art mass spectrometry to produce temporal profiles of individual photo-oxidation products. In the photo-oxidation of methyl chavicol, 70 individual compounds were characterized and three distinctive temporal profile shapes were observed. The calculated mass fraction (Ci,aer/COA) of the individual SOA compounds showed either a linear trend (increasing/decreasing) or exponential decay with time. Substituted nitrophenols showed an exponential decay, with the nitro-group on the aromatic ring found to control the formation and loss of these species in the aerosol phase. Nitrophenols from both methyl chavicol and toluene photo-oxidation experiments showed a strong relationship with the NO2/NO (ppbv/ppbv) ratio and were observed during initial SOA growth. The location of the nitrophenol aromatic substitutions was found to be critically important, with the nitrophenol in the photo-oxidation of 4-methyl catechol not partitioning into the aerosol phase until irradiation had stopped; highlighting the importance of studying SOA formation and evolution at a molecular level.


Asunto(s)
Hidrocarburos Aromáticos/química , Luz , Material Particulado/análisis , Derivados de Alilbenceno , Anisoles/química , Atmósfera/química , Humedad , Nitrofenoles/análisis , Oxidantes/química , Oxidación-Reducción/efectos de la radiación , Temperatura , Factores de Tiempo , Tolueno/química , Compuestos Orgánicos Volátiles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA