Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nucleic Acids Res ; 49(2): 1133-1151, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33406240

RESUMEN

Alternative splicing generates multiple transcript and protein isoforms from a single gene and controls transcript intracellular localization and stability by coupling to mRNA export and nonsense-mediated mRNA decay (NMD). RNA interference (RNAi) is a potent mechanism to modulate gene expression. However, its interactions with alternative splicing are poorly understood. We used artificial microRNAs (amiRNAs, also termed shRNAmiR) to knockdown all splice variants of selected target genes in Arabidopsis thaliana. We found that splice variants, which vary by their protein-coding capacity, subcellular localization and sensitivity to NMD, are affected differentially by an amiRNA, although all of them contain the target site. Particular transcript isoforms escape amiRNA-mediated degradation due to their nuclear localization. The nuclear and NMD-sensitive isoforms mask RNAi action in alternatively spliced genes. Interestingly, Arabidopsis SPL genes, which undergo alternative splicing and are targets of miR156, are regulated in the same manner. Moreover, similar results were obtained in mammalian cells using siRNAs, indicating cross-kingdom conservation of these interactions among RNAi and splicing isoforms. Furthermore, we report that amiRNA can trigger artificial alternative splicing, thus expanding the RNAi functional repertoire. Our findings unveil novel interactions between different post-transcriptional processes in defining transcript fates and regulating gene expression.


Asunto(s)
Empalme Alternativo/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Técnicas de Silenciamiento del Gen , Degradación de ARNm Mediada por Codón sin Sentido , Isoformas de Proteínas/genética , Interferencia de ARN , Precursores del ARN/metabolismo , ARN de Planta/metabolismo , Proteínas de Arabidopsis/biosíntesis , Exones , Genes de Plantas , Células HeLa , Humanos , MicroARNs/genética , Plantas Modificadas Genéticamente , Isoformas de Proteínas/biosíntesis , Protoplastos/metabolismo , Precursores del ARN/genética , Procesamiento Postranscripcional del ARN , ARN de Planta/genética , Factores de Empalme Serina-Arginina/biosíntesis , Factores de Empalme Serina-Arginina/genética , Transcripción Genética , Transfección
2.
Cells ; 12(12)2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37371083

RESUMEN

Nitrogen is an important macronutrient required for plant growth and development, thus directly impacting agricultural productivity. In recent years, numerous studies have shown that nitrogen-driven growth depends on pathways that control nitrate/nitrogen homeostasis and hormonal networks that act both locally and systemically to coordinate growth and development of plant organs. In this review, we will focus on recent advances in understanding the role of the plant hormones auxin and cytokinin and their crosstalk in nitrate-regulated growth and discuss the significance of novel findings and possible missing links.


Asunto(s)
Citocininas , Ácidos Indolacéticos , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Nitratos , Reguladores del Crecimiento de las Plantas/metabolismo , Desarrollo de la Planta
3.
Childs Nerv Syst ; 28(8): 1141-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22684518

RESUMEN

PURPOSE: The aim of the study was to evaluate frequency and clinical relevance of haemorrhagic events associated with primary angiitis of the central nervous system in childhood (cPACNS), a rare but increasingly recognized disease with varying clinical presentations. METHOD: A systematic literature review from 1990 onwards was conducted to identify reported cases of cPACNS. RESULTS: A total of 110 paediatric patients met the inclusion criteria. The median age was 9.5 years. Seven children (7/110, 6.4 %) demonstrated cerebral haemorrhage. Death occurred only in children with cerebral haemorrhage (4/110, 3.6 %); both a sudden and prolonged course of disease was observed. CONCLUSION: PACNS is a rare disease and the occurrence of haemorrhage with this condition is even rarer; however, the risk of an unfavourable outcome under these circumstances seems to be increased. PACNS adds to the list of differential diagnoses of intracerebral haemorrhage in the paediatric population.


Asunto(s)
Hemorragia Cerebral/epidemiología , Hemorragia Cerebral/etiología , Vasculitis del Sistema Nervioso Central/complicaciones , Hemorragia Cerebral/terapia , Niño , Humanos , Factores de Riesgo , Resultado del Tratamiento
4.
Genome Biol ; 23(1): 149, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35799267

RESUMEN

BACKGROUND: Accurate and comprehensive annotation of transcript sequences is essential for transcript quantification and differential gene and transcript expression analysis. Single-molecule long-read sequencing technologies provide improved integrity of transcript structures including alternative splicing, and transcription start and polyadenylation sites. However, accuracy is significantly affected by sequencing errors, mRNA degradation, or incomplete cDNA synthesis. RESULTS: We present a new and comprehensive Arabidopsis thaliana Reference Transcript Dataset 3 (AtRTD3). AtRTD3 contains over 169,000 transcripts-twice that of the best current Arabidopsis transcriptome and including over 1500 novel genes. Seventy-eight percent of transcripts are from Iso-seq with accurately defined splice junctions and transcription start and end sites. We develop novel methods to determine splice junctions and transcription start and end sites accurately. Mismatch profiles around splice junctions provide a powerful feature to distinguish correct splice junctions and remove false splice junctions. Stratified approaches identify high-confidence transcription start and end sites and remove fragmentary transcripts due to degradation. AtRTD3 is a major improvement over existing transcriptomes as demonstrated by analysis of an Arabidopsis cold response RNA-seq time-series. AtRTD3 provides higher resolution of transcript expression profiling and identifies cold-induced differential transcription start and polyadenylation site usage. CONCLUSIONS: AtRTD3 is the most comprehensive Arabidopsis transcriptome currently. It improves the precision of differential gene and transcript expression, differential alternative splicing, and transcription start/end site usage analysis from RNA-seq data. The novel methods for identifying accurate splice junctions and transcription start/end sites are widely applicable and will improve single-molecule sequencing analysis from any species.


Asunto(s)
Arabidopsis , Transcriptoma , Empalme Alternativo , Arabidopsis/genética , Perfilación de la Expresión Génica/métodos , RNA-Seq , Análisis de Secuencia de ARN/métodos
5.
Cell Rep ; 36(10): 109676, 2021 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-34496244

RESUMEN

For plants, light is the source of energy and the most relevant regulator of growth and adaptations to the environment by inducing changes in gene expression at various levels, including alternative splicing. Light-triggered chloroplast retrograde signals control alternative splicing in Arabidopsis thaliana. Here, we provide evidence that light regulates the expression of a core set of splicing-related factors in roots. Alternative splicing responses in roots are not directly caused by light but are instead most likely triggered by photosynthesized sugars. The target of rapamycin (TOR) kinase plays a key role in this shoot-to-root signaling pathway. Knocking down TOR expression or pharmacologically inhibiting TOR activity disrupts the alternative splicing responses to light and exogenous sugars in roots. Consistently, splicing decisions are modulated by mitochondrial activity in roots. In conclusion, by activating the TOR pathway, sugars act as mobile signals to coordinate alternative splicing responses to light throughout the whole plant.


Asunto(s)
Empalme Alternativo/genética , Luz , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Cloroplastos/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Plantas , Sirolimus/metabolismo
6.
Front Plant Sci ; 11: 91, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32140165

RESUMEN

Plants are exposed to a variety of abiotic and biotic stresses that may result in DNA damage. Endogenous processes - such as DNA replication, DNA recombination, respiration, or photosynthesis - are also a threat to DNA integrity. It is therefore essential to understand the strategies plants have developed for DNA damage detection, signaling, and repair. Alternative splicing (AS) is a key post-transcriptional process with a role in regulation of gene expression. Recent studies demonstrate that the majority of intron-containing genes in plants are alternatively spliced, highlighting the importance of AS in plant development and stress response. Not only does AS ensure a versatile proteome and influence the abundance and availability of proteins greatly, it has also emerged as an important player in the DNA damage response (DDR) in animals. Despite extensive studies of DDR carried out in plants, its regulation at the level of AS has not been comprehensively addressed. Here, we provide some insights into the interplay between AS and DDR in plants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA