Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Circulation ; 134(13): 961-977, 2016 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-27582424

RESUMEN

BACKGROUND: Survival after sudden cardiac arrest is limited by postarrest myocardial dysfunction, but understanding of this phenomenon is constrained by a lack of data from a physiological model of disease. In this study, we established an in vivo model of cardiac arrest and resuscitation, characterized the biology of the associated myocardial dysfunction, and tested novel therapeutic strategies. METHODS: We developed rodent models of in vivo postarrest myocardial dysfunction using extracorporeal membrane oxygenation resuscitation followed by invasive hemodynamics measurement. In postarrest isolated cardiomyocytes, we assessed mechanical load and Ca(2) (+)-induced Ca(2+) release (CICR) simultaneously using the microcarbon fiber technique and observed reduced function and myofilament calcium sensitivity. We used a novel fiberoptic catheter imaging system and a genetically encoded calcium sensor, GCaMP6f, to image CICR in vivo. RESULTS: We found potentiation of CICR in isolated cells from this extracorporeal membrane oxygenation model and in cells isolated from an ischemia/reperfusion Langendorff model perfused with oxygenated blood from an arrested animal but not when reperfused in saline. We established that CICR potentiation begins in vivo. The augmented CICR observed after arrest was mediated by the activation of Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). Increased phosphorylation of CaMKII, phospholamban, and ryanodine receptor 2 was detected in the postarrest period. Exogenous adrenergic activation in vivo recapitulated Ca(2+) potentiation but was associated with lesser CaMKII activation. Because oxidative stress and aldehydic adduct formation were high after arrest, we tested a small-molecule activator of aldehyde dehydrogenase type 2, Alda-1, which reduced oxidative stress, restored calcium and CaMKII homeostasis, and improved cardiac function and postarrest outcome in vivo. CONCLUSIONS: Cardiac arrest and reperfusion lead to CaMKII activation and calcium long-term potentiation, which support cardiomyocyte contractility in the face of impaired postarrest myofilament calcium sensitivity. Alda-1 mitigates these effects, normalizes calcium cycling, and improves outcome.


Asunto(s)
Aldehído Deshidrogenasa/metabolismo , Benzamidas/farmacología , Benzodioxoles/farmacología , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Paro Cardíaco/fisiopatología , Potenciación a Largo Plazo/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Cardiomiopatías/tratamiento farmacológico , Cardiomiopatías/metabolismo , Potenciación a Largo Plazo/fisiología , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Retículo Sarcoplasmático/metabolismo
2.
J Biomech ; 52: 48-54, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28038771

RESUMEN

This study compares the physiological responses of systemic-to-pulmonary shunted single ventricle patients to pulsatile and continuous flow ventricular assist devices (VADs). Performance differences between pulsatile and continuous flow VADs have been clinically observed, but the underlying mechanism remains poorly understood. Six systemic-to-pulmonary shunted single ventricle patients (mean BSA=0.30m2) were computationally simulated using a lumped-parameter network tuned to match patient specific clinical data. A first set of simulations compared current clinical implementation of VADs in single ventricle patients. A second set modified pulsatile flow VAD settings with the goal to optimize cardiac output (CO). For all patients, the best-case continuous flow VAD CO was at least 0.99L/min greater than the optimized pulsatile flow VAD CO (p=0.001). The 25 and 50mL pulsatile flow VADs exhibited incomplete filling at higher heart rates that reduced CO as much as 9.7% and 37.3% below expectations respectively. Optimization of pulsatile flow VAD settings did not achieve statistically significant (p<0.05) improvement to CO. Results corroborate clinical experience that continuous flow VADs produce higher CO and superior ventricular unloading in single ventricle patients. Impaired filling leads to performance degradation of pulsatile flow VADs in the single ventricle circulation.


Asunto(s)
Corazón Auxiliar , Gasto Cardíaco , Hemorreología , Humanos , Función Ventricular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA