Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Nat Immunol ; 25(5): 778-789, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589619

RESUMEN

Natural killer (NK) cells are a critical first line of defense against viral infection. Rare mutations in a small subset of transcription factors can result in decreased NK cell numbers and function in humans, with an associated increased susceptibility to viral infection. However, our understanding of the specific transcription factors governing mature human NK cell function is limited. Here we use a non-viral CRISPR-Cas9 knockout screen targeting genes encoding 31 transcription factors differentially expressed during human NK cell development. We identify myocyte enhancer factor 2C (MEF2C) as a master regulator of human NK cell functionality ex vivo. MEF2C-haploinsufficient patients and mice displayed defects in NK cell development and effector function, with an increased susceptibility to viral infection. Mechanistically, MEF2C was required for an interleukin (IL)-2- and IL-15-mediated increase in lipid content through regulation of sterol regulatory element-binding protein (SREBP) pathways. Supplementation with oleic acid restored MEF2C-deficient and MEF2C-haploinsufficient patient NK cell cytotoxic function. Therefore, MEF2C is a critical orchestrator of NK cell antiviral immunity by regulating SREBP-mediated lipid metabolism.


Asunto(s)
Células Asesinas Naturales , Metabolismo de los Lípidos , Factores de Transcripción MEF2 , Factores de Transcripción MEF2/metabolismo , Factores de Transcripción MEF2/genética , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Animales , Humanos , Ratones , Sistemas CRISPR-Cas , Ratones Noqueados , Interleucina-15/metabolismo , Ratones Endogámicos C57BL
2.
Nat Immunol ; 24(5): 780-791, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36928413

RESUMEN

Viral infection outcomes are sex biased, with males generally more susceptible than females. Paradoxically, the numbers of antiviral natural killer (NK) cells are increased in males. We demonstrate that while numbers of NK cells are increased in male mice, they display decreased effector function compared to females in mice and humans. These differences were not solely dependent on gonadal hormones, because they persisted in gonadectomized mice. Kdm6a (which encodes the protein UTX), an epigenetic regulator that escapes X inactivation, was lower in male NK cells, while NK cell-intrinsic UTX deficiency in female mice increased NK cell numbers and reduced effector responses. Furthermore, mice with NK cell-intrinsic UTX deficiency showed increased lethality to mouse cytomegalovirus. Integrative multi-omics analysis revealed a critical role for UTX in regulating chromatin accessibility and gene expression critical for NK cell homeostasis and effector function. Collectively, these data implicate UTX as a critical molecular determinant of sex differences in NK cells.


Asunto(s)
Genes Ligados a X , Caracteres Sexuales , Masculino , Humanos , Femenino , Ratones , Animales , Epigénesis Genética , Células Asesinas Naturales , Histona Demetilasas/genética
3.
Nat Immunol ; 23(4): 556-567, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288713

RESUMEN

Natural killer (NK) cells are innate lymphocytes that possess traits of adaptive immunity, such as memory formation. However, the molecular mechanisms by which NK cells persist to form memory cells are not well understood. Using single-cell RNA sequencing, we identified two distinct effector NK cell (NKeff) populations following mouse cytomegalovirus infection. Ly6C- memory precursor (MP) NK cells showed enhanced survival during the contraction phase in a Bcl2-dependent manner, and differentiated into Ly6C+ memory NK cells. MP NK cells exhibited distinct transcriptional and epigenetic signatures compared with Ly6C+ NKeff cells, with a core epigenetic signature shared with MP CD8+ T cells enriched in ETS1 and Fli1 DNA-binding motifs. Fli1 was induced by STAT5 signaling ex vivo, and increased levels of the pro-apoptotic factor Bim in early effector NK cells following viral infection. These results suggest that a NK cell-intrinsic checkpoint controlled by the transcription factor Fli1 limits MP NK formation by regulating early effector NK cell fitness during viral infection.


Asunto(s)
Infecciones por Citomegalovirus , Muromegalovirus , Inmunidad Adaptativa , Animales , Linfocitos T CD8-positivos , Memoria Inmunológica , Células Asesinas Naturales , Ratones
4.
Nat Immunol ; 20(8): 1004-1011, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31263280

RESUMEN

Innate lymphoid cells (ILCs) are tissue-resident sentinels that are essential for early host protection from pathogens at initial sites of infection. However, whether pathogen-derived antigens directly modulate the responses of tissue-resident ILCs has remained unclear. In the present study, it was found that liver-resident type 1 ILCs (ILC1s) expanded locally and persisted after the resolution of infection with mouse cytomegalovirus (MCMV). ILC1s acquired stable transcriptional, epigenetic and phenotypic changes a month after the resolution of MCMV infection, and showed an enhanced protective effector response to secondary challenge with MCMV consistent with a memory lymphocyte response. Memory ILC1 responses were dependent on the MCMV-encoded glycoprotein m12, and were independent of bystander activation by proinflammatory cytokines after heterologous infection. Thus, liver ILC1s acquire adaptive features in an MCMV-specific manner.


Asunto(s)
Memoria Inmunológica/inmunología , Hígado/inmunología , Linfocitos/inmunología , Glicoproteínas de Membrana/inmunología , Muromegalovirus/inmunología , Proteínas del Envoltorio Viral/inmunología , Animales , Infecciones por Herpesviridae/inmunología , Infecciones por Herpesviridae/virología , Inmunidad Innata/inmunología , Subunidad alfa del Receptor de Interleucina-18/metabolismo , Hígado/citología , Ratones
6.
Immunity ; 52(1): 96-108.e9, 2020 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-31810881

RESUMEN

Although type 1 innate lymphoid cells (ILC1s) have been originally found as liver-resident ILCs, their pathophysiological role in the liver remains poorly investigated. Here, we demonstrated that carbon tetrachloride (CCl4) injection into mice activated ILC1s, but not natural killer (NK) cells, in the liver. Activated ILC1s produced interferon-γ (IFN-γ) and protected mice from CCl4-induced acute liver injury. IFN-γ released from activated ILC1s promoted the survival of hepatocytes through upregulation of Bcl-xL. An activating NK receptor, DNAM-1, was required for the optimal activation and IFN-γ production of liver ILC1s. Extracellular adenosine triphosphate accelerated interleukin-12-driven IFN-γ production by liver ILC1s. These findings suggest that ILC1s are critical for tissue protection during acute liver injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Hepatocitos/metabolismo , Interferón gamma/inmunología , Hígado/citología , Linfocitos/inmunología , Proteína bcl-X/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Antígenos de Diferenciación de Linfocitos T/genética , Antígenos de Diferenciación de Linfocitos T/metabolismo , Tetracloruro de Carbono/toxicidad , Células Cultivadas , Femenino , Subunidad p35 de la Interleucina-12/inmunología , Células Asesinas Naturales/inmunología , Hígado/inmunología , Hígado/lesiones , Activación de Linfocitos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
7.
Blood ; 141(9): 1007-1022, 2023 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-36332160

RESUMEN

X-linked chronic granulomatous disease (X-CGD) is a primary immunodeficiency caused by mutations in the CYBB gene, resulting in the inability of phagocytic cells to eliminate infections. To design a lentiviral vector (LV) capable of recapitulating the endogenous regulation and expression of CYBB, a bioinformatics-guided approach was used to elucidate the cognate enhancer elements regulating the native CYBB gene. Using this approach, we analyzed a 600-kilobase topologically associated domain of the CYBB gene and identified endogenous enhancer elements to supplement the CYBB promoter to develop MyeloVec, a physiologically regulated LV for the treatment of X-CGD. When compared with an LV currently in clinical trials for X-CGD, MyeloVec showed improved expression, superior gene transfer to hematopoietic stem and progenitor cells (HSPCs), corrected an X-CGD mouse model leading to complete protection against Burkholderia cepacia infection, and restored healthy donor levels of antimicrobial oxidase activity in neutrophils derived from HSPCs from patients with X-CGD. Our findings validate the bioinformatics-guided design approach and have yielded a novel LV with clinical promise for the treatment of X-CGD.


Asunto(s)
Enfermedad Granulomatosa Crónica , Animales , Ratones , Enfermedad Granulomatosa Crónica/genética , Enfermedad Granulomatosa Crónica/terapia , NADPH Oxidasas/genética , NADPH Oxidasas/metabolismo , NADPH Oxidasa 2/genética , Terapia Genética/métodos , Mutación
8.
Trends Immunol ; 40(10): 909-921, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31500958

RESUMEN

Innate lymphoid cells (ILCs) consist of a heterogeneous family of lymphocytes that regulate tissue homeostasis and can contribute to pathology in mice and humans. Mammalian group 1 ILCs are defined by the production of interferon (IFN)-γ and the functional dependence on the transcription factor T-bet. While recent studies demonstrate that group 1 ILCs consist of circulating mature natural killer (NK) cells and tissue-resident ILC1s, the functional, phenotypic, and developmental properties that distinguish these two cell lineages are often confusing and difficult to dissect. In this review, we critically evaluate the current knowledge of mammalian group 1 ILC heterogeneity and propose new inclusive nomenclature to clarify the roles of ILC1s and NK cells during homeostasis and disease.


Asunto(s)
Inmunidad Innata/inmunología , Subgrupos Linfocitarios/inmunología , Animales , Humanos , Células Asesinas Naturales/inmunología
9.
Front Aging ; 3: 924957, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35935727

RESUMEN

Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.

10.
Clin Transl Immunology ; 10(1): e1238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33456775

RESUMEN

Natural killer (NK) cells are cytotoxic innate lymphocytes that protect against viral infection and tumor metastasis. Despite their inherent ability to kill a broad range of virally infected, stressed and transformed cells, low numbers of dysfunctional NK cells are often observed in many advanced solid human cancers. Here, we review the potential mechanisms that influence suboptimal mature NK cell recruitment and function in the tumor microenvironment (TME) of solid tumors. We further highlight current immunotherapy approaches aimed to circumvent NK cell dysfunction and discuss next-generation strategies to enhance adoptive NK cell therapy through targeting intrinsic and extrinsic checkpoints the regulate NK cell functionality in the TME. Understanding the mechanisms that drive NK cell dysfunction in the TME will lead to novel immunotherapeutic approaches in the fight against cancer.

11.
STAR Protoc ; 1(3): 100113, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377009

RESUMEN

CRISPR-Cas9 genome engineering can be used to functionally investigate the complex mechanisms of immune system regulation. Decades of work have aimed to genetically reprogram innate immunity, but current approaches are inefficient or nonspecific, limiting their use. Here, we detail an optimized strategy for non-viral CRISPR-Cas9 ribonucleoprotein (cRNP) genomic editing of primary innate lymphocytes (ILCs) and myeloid lineage cells, resulting in high-efficiency editing of target gene expression from a single electroporation. For complete details on the use and execution of this protocol, please refer to Riggan et al. (2020).


Asunto(s)
Electroporación/métodos , Edición Génica/métodos , Inmunidad Innata/genética , Animales , Sistemas CRISPR-Cas/genética , Genómica , Humanos , Inmunidad Innata/fisiología , Linfocitos/metabolismo , Células Mieloides/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
12.
Cell Rep ; 31(7): 107651, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32433960

RESUMEN

CRISPR genome engineering has become a powerful tool to functionally investigate the complex mechanisms of immune system regulation. While decades of work have aimed to genetically reprogram innate immunity, the utility of current approaches is restricted by poor knockout efficiencies or limited specificity for mature cell lineages in vivo. Here, we describe an optimized strategy for non-viral CRISPR-Cas9 ribonucleoprotein (cRNP) genomic editing of mature primary mouse innate lymphocyte cells (ILCs) and myeloid lineage cells that results in an almost complete loss of single or double target gene expression from a single electroporation. Furthermore, we describe in vivo adoptive transfer mouse models that can be utilized to screen for gene function during viral infection using cRNP-edited naive natural killer (NK) cells and bone-marrow-derived conventional dendritic cell precursors (cDCPs). This resource will enhance target gene discovery and offer a specific and simplified approach to gene editing in the mouse innate immune system.


Asunto(s)
Edición Génica/métodos , Terapia Genética/métodos , Inmunidad Innata/genética , Ribonucleoproteínas/metabolismo , Animales , Sistemas CRISPR-Cas , Ratones
13.
Front Oncol ; 10: 563156, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33425720

RESUMEN

MYC family oncoproteins MYC, MYCN, and MYCL are deregulated in diverse cancers and via diverse mechanisms. Recent studies established a novel form of MYCN regulation in MYCN-overexpressing retinoblastoma and neuroblastoma cells in which the MDM2 oncoprotein promotes MYCN translation and MYCN-dependent proliferation via a p53-independent mechanism. However, it is unclear if MDM2 also promotes expression of other MYC family members and has similar effects in other cancers. Conversely, MYCN has been shown to induce MDM2 expression in neuroblastoma cells, yet it is unclear if MYC shares this ability, if MYC family proteins upregulate MDM2 in other malignancies, and if this regulation occurs during tumorigenesis as well as in cancer cell lines. Here, we report that intrinsically high MDM2 expression is required for high-level expression of MYCN, but not for expression of MYC, in retinoblastoma, neuroblastoma, small cell lung cancer, and medulloblastoma cells. Conversely, ectopic overexpression of MYC as well as MYCN induced high-level MDM2 expression and gave rise to rapidly proliferating and MDM2-dependent cone-precursor-derived masses in a cultured retinoblastoma genesis model. These findings reveal a highly specific collaboration between the MDM2 and MYCN oncoproteins and demonstrate the origin of their oncogenic positive feedback circuit within a normal neuronal tissue.

14.
Mol Cancer Res ; 15(5): 521-531, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28465296

RESUMEN

Androgen receptor (AR) signaling is fundamental to prostate cancer and is the dominant therapeutic target in metastatic disease. However, stringent androgen deprivation therapy regimens decrease quality of life and have been largely unsuccessful in curtailing mortality. Recent clinical and preclinical studies have taken advantage of the dichotomous ability of AR signaling to elicit growth-suppressive and differentiating effects by administering hyperphysiologic levels of testosterone. In this study, high-throughput drug screening identified a potent synergy between high-androgen therapy and YM155, a transcriptional inhibitor of survivin (BIRC5). This interaction was mediated by the direct transcriptional upregulation of the YM155 transporter SLC35F2 by the AR. Androgen-mediated YM155-induced cell death was completely blocked by the overexpression of multidrug resistance transporter ABCB1. SLC35F2 expression was significantly correlated with intratumor androgen levels in four distinct patient-derived xenograft models, and with AR activity score in a large gene expression dataset of castration-resistant metastases. A subset of tumors had significantly elevated SLC35F2 expression and, therefore, may identify patients who are highly responsive to YM155 treatment. IMPLICATIONS: The combination of androgen therapy with YM155 represents a novel drug synergy, and SLC35F2 may serve as a clinical biomarker of response to YM155.


Asunto(s)
Andrógenos/administración & dosificación , Imidazoles/administración & dosificación , Proteínas de Transporte de Membrana/genética , Naftoquinonas/administración & dosificación , Neoplasias de la Próstata/tratamiento farmacológico , Receptores Androgénicos/metabolismo , Andrógenos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Imidazoles/farmacología , Masculino , Ratones , Naftoquinonas/farmacología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/metabolismo , Transducción de Señal/efectos de los fármacos , Testosterona/administración & dosificación , Testosterona/farmacología , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA