Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros

País/Región como asunto
País de afiliación
Intervalo de año de publicación
1.
Eur J Clin Microbiol Infect Dis ; 43(1): 167-170, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37917224

RESUMEN

The failures in Trichomonas vaginalis (TV) infection diagnosis leave more than half of cases unidentified. In this report, urine and vaginal discharge samples were analyzed by wet mount, culture examination, and real-time PCR by Allplex™ (Seegene®) kit, in a population assisted by the Brazilian Public Health System. From 747 samples, 2.81% were positive for TV in wet mount and culture, and 3.88% by Allplex™. Samples kept at - 80 ºC for 22 months did not impair the PCR technique. The sensitivity for wet mount, culture, and Allplex™ was 72, 100, and 100%, respectively. Allplex™ technique showed highest detection of TV.


Asunto(s)
Enfermedades de Transmisión Sexual , Vaginitis por Trichomonas , Trichomonas vaginalis , Femenino , Humanos , Trichomonas vaginalis/genética , Vaginitis por Trichomonas/diagnóstico , Vaginitis por Trichomonas/epidemiología , Brasil/epidemiología , Salud Pública , Sensibilidad y Especificidad , Reacción en Cadena en Tiempo Real de la Polimerasa , Enfermedades de Transmisión Sexual/diagnóstico , Enfermedades de Transmisión Sexual/epidemiología
2.
Bioorg Chem ; 125: 105912, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35660839

RESUMEN

Trichomoniasis is a neglected parasitic infection, with no oral therapeutic alternatives to overcome the pitfalls of currently approved drugs. In this context, the search for new anti-Trichomonas vaginalis drugs is imperative. Here we report the selective anti-T. vaginalis activity of a substituted 8-hydroxyquinoline-5-sulfonamide derivative. Six different derivatives were evaluated for anti-T. vaginalis. In vitro and in vivo toxicity methods, association with metal ions, and investigation on the mechanism of action were performed with the most active derivative, PH 152. Cytotoxicity assays showed selectivity for the parasite and the low toxicity was confirmed in G. mellonella larvae model. The mode of action is related to iron chelation by disrupting Fe-S clusters-dependent enzyme activities in the parasite. Proteomic analysis indicated inhibition of metallopeptidases related to T. vaginalis virulence mechanisms and metabolic pathways. PH 152 presented selective trichomonacidal activity through multitarget action.


Asunto(s)
Trichomonas vaginalis , Quelantes del Hierro , Metaloproteasas , Oxiquinolina/farmacología , Proteómica , Trichomonas vaginalis/fisiología
3.
Parasitol Res ; 121(3): 981-989, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35113221

RESUMEN

Trichomoniasis is the most common non-viral sexually transmitted infection worldwide and it may have serious consequences, especially for women. Currently, 5-nitroimidazole drugs are the treatment of choice for trichomoniasis, although presenting adverse effects and reported cases of drug resistance. Metabolites isolated from marine fungi have attracted considerable attention due to their unique chemical structures with diverse biological activities, including antiprotozoal activity. In this study, we showed the anti-Trichomonas vaginalis activity of fractions obtained from marine fungi and the chemical composition of the most active fraction was determined. Ethyl acetate fractions of the fungus Aspergillus niger (EAE03) and Trichoderma harzianum/Hypocrea lixii complex (EAE09) were active against T. vaginalis. These samples, EAE03 and EAE09, were also effective against the fresh clinical isolate metronidazole-resistant TV-LACM2R, presenting MIC values of 2.0 mg/mL and 1.0 mg/mL, respectively. The same MIC values were found against ATCC 30,236 T. vaginalis isolate. In vitro cytotoxicity revealed only the fraction named EAE03 with no cytotoxic effect; however, the active fractions did not promote a significant hemolytic effect after 1-h incubation. Already, the in vivo toxicity evaluation using Galleria mellonella larvae demonstrated that none of the tested samples caused a reduction in animal survival. The fraction EAE03 was followed for purification steps and analyzed by LC-DAD-MS. Eleven compounds were annotated, including butyrolactone, butanolide, and atromentin. Overall, the range of activities reported confirms the potential of marine fungi to produce bioactive molecules.


Asunto(s)
Antiprotozoarios , Tricomoniasis , Trichomonas vaginalis , Animales , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Femenino , Hongos , Humanos , Metronidazol/farmacología , Tricomoniasis/tratamiento farmacológico
4.
Planta Med ; 87(6): 480-488, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33578433

RESUMEN

Trichomonas vaginalis causes trichomoniasis, a nonviral sexually transmitted infection with a high prevalence worldwide. Oral metronidazole is the drug of choice for the treatment of this disease, although high levels of T. vaginalis resistance to this agent are well documented in the literature. This study describes the anti-T. vaginalis activity of an optimized coumarin-rich extract from Pterocaulon balansae. Optimization was performed to maximize extraction of total coumarins by means of a 3-level Box-Behnken design, evaluating the effect of three factors: extraction time, plant : solvent ratio, and ethanol concentration. Optimum conditions were found to be 5 h extraction time and a plant : solvent ratio of 1% (w/v) and 60% (v/v) ethanol, which resulted in approximately 30 mg of total coumarins/g of dry plant. The coumarin-enriched extract exhibited a minimum inhibitory concentration of 30 µg/mL and an IC50 of 3.2 µg/mL against T. vaginalis, a low cytotoxicity, and a high selectivity index (18 for vaginal epithelial cells and 16 for erythrocytes). The coumarins permeation/retention profile through porcine vaginal mucosa was evaluated in Franz-type diffusion cells. After 8 h of kinetics, coumarins were detected in the tissue (4.93 µg/g) without detecting them in the receptor compartment. A significant increase of coumarins in the mucosa layers (8.18 µg/g) and receptor compartment (0.26 µg/g) was detected when a T. vaginalis suspension (2 × 105 trophozoites/mL) was previously added onto the mucosa. No alterations were visualized in the stratified squamous non-keratinized epithelium of the porcine vaginal mucosa after contact with the extract. Overall, these results suggest that the P. balansae coumarin-rich extract may have potential as a treatment for trichomoniasis.


Asunto(s)
Asteraceae , Trichomonas vaginalis , Animales , Cumarinas/farmacología , Femenino , Metronidazol/farmacología , Pruebas de Sensibilidad Microbiana , Porcinos
5.
Parasitol Res ; 119(8): 2587-2595, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32524267

RESUMEN

Lycorine is an Amaryllidaceae alkaloid that presents anti-Trichomonas vaginalis activity. T. vaginalis causes trichomoniasis, the most common non-viral sexually transmitted infection. The modulation of T. vaginalis purinergic signaling through the ectonucleotidases, nucleoside triphosphate diphosphohydrolase (NTPDase), and ecto-5'-nucleotidase represents new targets for combating the parasite. With this knowledge, the aim of this study was to investigate whether NTPDase and ecto-5'-nucleotidase inhibition by lycorine could lead to extracellular ATP accumulation. Moreover, the lycorine effect on the reactive oxygen species (ROS) production by neutrophils and parasites was evaluated as well as the alkaloid toxicity. The metabolism of purines was assessed by HPLC. ROS production was measured by flow cytometry. Cytotoxicity against epithelial vaginal cells and fibroblasts was tested, as well as the hemolytic effect of lycorine and its in vivo toxicity in Galleria mellonella larvae. Our findings showed that lycorine caused ATP accumulation due to NTPDase inhibition. The alkaloid did not affect the ROS production by T. vaginalis; however, it increased ROS levels in neutrophils incubated with lycorine-treated trophozoites. Lycorine was cytotoxic against vaginal epithelial cells and fibroblasts; conversely, it was not hemolytic neither exhibited toxicity against the in vivo model of G. mellonella larvae. Overall, besides having anti-T. vaginalis activity, lycorine modulates ectonucleotidases and stimulates neutrophils to secrete ROS. This mechanism of action exerted by the alkaloid could enhance the susceptibility of T. vaginalis to host immune cell, contributing to protozoan clearance.


Asunto(s)
Alcaloides de Amaryllidaceae/farmacología , Amaryllidaceae/química , Antiprotozoarios/farmacología , Neutrófilos/metabolismo , Nucleósido-Trifosfatasa/antagonistas & inhibidores , Fenantridinas/farmacología , Extractos Vegetales/farmacología , Proteínas Protozoarias/antagonistas & inhibidores , Tricomoniasis/metabolismo , Trichomonas vaginalis/enzimología , 5'-Nucleotidasa/antagonistas & inhibidores , 5'-Nucleotidasa/metabolismo , Humanos , Neutrófilos/efectos de los fármacos , Nucleósido-Trifosfatasa/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tricomoniasis/parasitología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/crecimiento & desarrollo , Trichomonas vaginalis/metabolismo , Trofozoítos/efectos de los fármacos , Trofozoítos/enzimología , Trofozoítos/crecimiento & desarrollo , Trofozoítos/metabolismo
6.
Parasitol Res ; 118(2): 607-615, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30535524

RESUMEN

Trichomoniasis is the most common non-viral sexually transmitted disease worldwide and can lead to serious consequences in reproductive health, cancer, and HIV acquisition. The current approved treatment present adverse effects and drug resistance data on this neglected parasitic infection is underestimated. Chalcones are a family of molecules that present biological applications, such as activity against many pathogenic organisms including protozoan pathogens. Chalcone (1) and three amino-analogues (2-4) were synthesized by Claisen-Schmidt condensation reaction and had their activity evaluated against the parasitic protozoan Trichomonas vaginalis. This bioassay indicated the presence and position of the amino group on ring A was crucial for anti-T. vaginalis activity. Among these, 3'-aminochalcone (3) presented the most potent effect and showed high cytotoxicity against human vaginal cells. On the other hand, 3 was not able to exhibit toxicity against Galleria mellonella larvae, as well as the hemolytic effect on human erythrocytes. Trophozoites of T. vaginalis were treated with 3, and did not present significant reactive oxygen species (ROS) accumulation, but induced a significantly higher ROS accumulation in human neutrophils after co-incubation. T. vaginalis pyruvate:ferredoxin oxidoreductase (PFOR) and ß-tubulin gene expression was not affected by 3.


Asunto(s)
Antiprotozoarios/farmacología , Chalconas/farmacología , Enfermedades de Transmisión Sexual/tratamiento farmacológico , Tricomoniasis/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Chalconas/síntesis química , Resistencia a Medicamentos , Femenino , Humanos , Pruebas de Sensibilidad Parasitaria , Enfermedades de Transmisión Sexual/parasitología , Tricomoniasis/parasitología , Trofozoítos/efectos de los fármacos
7.
Parasitol Res ; 117(5): 1573-1580, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29572567

RESUMEN

Trichomonas vaginalis is an extracellular parasite that binds to the epithelium of the human urogenital tract and causes the sexually transmitted infection, trichomoniasis. In view of increased resistance to drugs belonging to the 5-nitroimidazole class, new treatment alternatives are urgently needed. In this study, eight semisynthetized triterpene derivatives were evaluated for in vitro anti-T. vaginalis activity. Ursolic acid and its derivative, 3-oxime-urs-12-en-28-oic-ursolic acid (9), presented the best anti-T. vaginalis activity when compared to other derivatives, with minimum inhibitory concentration (MIC) at 25 µM. Moreover, 9 was active against several T. vaginalis fresh clinical isolates. Hemolysis assay demonstrated that 9 presented a low hemolytic effect. Importantly, 25 µM 9 was not cytotoxic against the Vero cell lineage. Finally, we demonstrated that compound 9 acts synergistically with metronidazole against a T. vaginalis metronidazole-resistant isolate. This report reveals the high potential of the triterpenoid derivative 9 as trichomonicidal agent.


Asunto(s)
Antitricomonas/farmacología , Sinergismo Farmacológico , Metronidazol/farmacología , Tricomoniasis/tratamiento farmacológico , Vaginitis por Trichomonas/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Triterpenos/farmacología , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Chlorocebus aethiops , Resistencia a Medicamentos , Quimioterapia Combinada , Femenino , Células HeLa , Hemólisis/efectos de los fármacos , Humanos , Pruebas de Sensibilidad Microbiana , Tricomoniasis/parasitología , Vaginitis por Trichomonas/parasitología , Triterpenos/química , Células Vero , Ácido Ursólico
8.
Parasitol Res ; 116(12): 3275-3284, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-29026991

RESUMEN

The parasitism by Trichomonas vaginalis is complex and in part is mediated by cytoadherence accomplished via five surface proteins named adhesins and a glycoconjugate called lipophosphoglycan (TvLPG). In this study, we evaluated the ability of T. vaginalis isolates to adhere to cells, plastic (polystyrene microplates), intrauterine device (IUD), and vaginal ring. Of 32 T. vaginalis isolates, 4 (12.5%) were strong adherent. The T. vaginalis isolates TV-LACM6 and TV-LACM14 (strong polystyrene-adherent) were also able to adhere to IUD and vaginal ring. Following chemical treatments, results demonstrated that the T. vaginalis components, lipophosphoglycan, cytoskeletal proteins, and surface molecules, were involved in both adherence to polystyrene and cytoadherence. The gene expression level from four adhesion proteins was highest in trophozoites adhered to cells than trophozoites adhered to the abiotic surface (polystyrene microplate). Our data indicate the major involvement of TvLPG in adherence to polystyrene, and that adhesins are important for cytoadherence. Furthermore, to our knowledge, this is the first report showing the T. vaginalis adherence to contraceptive devices, reaffirming its importance as pathogen among women in reproductive age.


Asunto(s)
Adhesión Celular , Dispositivos Intrauterinos/parasitología , Poliestirenos , Trichomonas vaginalis/fisiología , Animales , Línea Celular , Femenino , Glicoesfingolípidos , Humanos , Proteínas de la Membrana/metabolismo , Trichomonas vaginalis/aislamiento & purificación
9.
Mem Inst Oswaldo Cruz ; 110(7): 877-83, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26517498

RESUMEN

Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalis isolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.


Asunto(s)
Adenosina Desaminasa/metabolismo , Quelantes del Hierro/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología , Adenosina Desaminasa/efectos de los fármacos , Animales , Bovinos , Femenino , Regulación Enzimológica de la Expresión Génica , Humanos , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trichomonas vaginalis/crecimiento & desarrollo
10.
Pathogens ; 12(5)2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37242415

RESUMEN

Trichomonas vaginalis is responsible for 156 million new cases per year worldwide. When present asymptomatically, the parasite can lead to serious complications, such as development of cervical and prostate cancer. As infection increases the acquisition and transmission of HIV, the control of trichomoniasis represents an important niche for the discovery and development of new antiparasitic molecules. This urogenital parasite synthesizes several molecules that allow the establishment and pathogenesis of infection. Among them, peptidases occupy key roles as virulence factors, and the inhibition of these enzymes has become an important mechanism for modulating pathogenesis. Based on these premises, our group recently reported the potent anti-T. vaginalis action of the metal-based complex [Cu(phendione)3](ClO4)2.4H2O (Cu-phendione). In the present study, we evaluated the influence of Cu-phendione on the modulation of proteolytic activities produced by T. vaginalis by biochemical and molecular approaches. Cu-phendione showed strong inhibitory potential against T. vaginalis peptidases, especially cysteine- and metallo-type peptidases. The latter revealed a more prominent effect at both the post-transcriptional and post-translational levels. Molecular Docking analysis confirmed the interaction of Cu-phendione, with high binding energy (-9.7 and -10.7 kcal·mol-1, respectively) at the active site of both TvMP50 and TvGP63 metallopeptidases. In addition, Cu-phendione significantly reduced trophozoite-mediated cytolysis in human vaginal (HMVII) and monkey kidney (VERO) epithelial cell lineages. These results highlight the antiparasitic potential of Cu-phendione by interaction with important T. vaginalis virulence factors.

11.
Mar Biotechnol (NY) ; 24(5): 1014-1022, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36102994

RESUMEN

Trichomoniasis is the most common non-viral sexually transmitted infection (STI) in the world caused by Trichomonas vaginalis. Failures in the treatment with the 5-nitroimidazole class including parasite resistance to metronidazole elicit new alternatives. Marine natural products are sources of several relevant molecules, presenting a variety of metabolites with numerous biological activities. In this work, we evaluated the anti-T. vaginalis activity of fungi associated with marine invertebrates by mass spectrometry-based metabolomics approaches. After screening of six marine fungi, extract from Penicillium citrinum FMPV 15 has shown to be 100% active against T. vaginalis, and the gel permeation column on Sephadex LH-20® yielded twelve organic fractions which five showed to be active. Metabolomics and statistical analyses were performed with all the samples (extract and fractions), and several compounds were suggested to be related to the activity. These components include citrinin, dicitrinin C, citreoisocoumarin, dihydrocitrinone, decarboxycitrinin, penicitrinone C, and others. The minimum inhibitory concentration (MIC) value of anti-T. vaginalis activity of citrinin was 200 µM. The marine fungi metabolites show potential as new alternatives to overcome drug resistance in T. vaginalis infections.


Asunto(s)
Productos Biológicos , Citrinina , Trichomonas vaginalis , Hongos , Espectrometría de Masas , Metronidazol/farmacología , Extractos Vegetales
12.
Pharmaceutics ; 14(10)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36297547

RESUMEN

Trichomoniasis is the most common nonviral sexually transmitted infection in the world, but its available therapies present low efficacy and high toxicity. Diphenyl diselenide (PhSe2) is a pharmacologically active organic selenium compound; however, its clinical use is hindered by its lipophilicity and toxicity. Nanocarriers are an interesting approach to overcome the limitations associated with this compound. This study designed and evaluated a vaginal hydrogel containing PhSe2-loaded Eudragit® RS100 and coconut oil nanocapsules for the treatment of trichomoniasis. Nanocapsules presented particle sizes in the nanometric range, positive zeta potential, a compound content close to the theoretical value, and high encapsulation efficiency. The nanoencapsulation maintained the anti-Trichomonas vaginalis action of the compound while improving the scavenger action in a DPPH assay. The hydrogels were prepared by thickening nanocapsule suspensions with locust bean gum (3%). The semisolids maintained the nanometric size of the particles and the PhSe2 content at around the initial concentration (1.0 mg/g). They also displayed non-Newtonian pseudo-plastic behavior and a highly mucoadhesive property. The chorioallantoic membrane method indicated the absence of hemorrhage, coagulation, or lysis. The compound, from both non-encapsulated and nano-based hydrogel delivery systems, remained on the surface of the bovine vaginal mucosa. Therefore, the formulations displayed the intended properties and could be a promising alternative for the treatment of trichomoniasis.

13.
Biomed Pharmacother ; 139: 111611, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-34243597

RESUMEN

Trichomonas vaginalis is an amitochondriate protozoan and the agent of human trichomoniasis, the most prevalent non-viral sexually transmitted infection (STI) in the world. In this study we showed that 2,4-diamine-quinazoline derivative compound (PH100) kills T. vaginalis. PH100 showed activity against fresh clinical and American Type Culture Collection (ATCC) T. vaginalis isolates with no cytotoxicity against cells (HMVI, 3T3-C1 and VERO) and erythrocytes. In addition, PH100 showed synergistic action with metronidazole, indicating that these compounds act by different mechanisms. When investigating the mechanism of action of PH100 to ATCC 30236, apoptosis-like characteristics were observed, such as phosphatidylserine exposure, membrane alterations, and modulation of gene expression and activity of peptidases related to apoptosis. The apoptosis-like cell death features were not observed for the fresh clinical isolate treated with PH100 revealing distinct profiles. Our data revealed the heterogeneity among T. vaginalis isolates and contribute with the understanding of mechanisms of cell death in pathogenic eukaryotic organisms without mitochondria.


Asunto(s)
Diaminas/farmacología , Parásitos/efectos de los fármacos , Péptido Hidrolasas/metabolismo , Quinazolinas/farmacología , Vaginitis por Trichomonas/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Células 3T3 , Animales , Apoptosis/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Chlorocebus aethiops , Femenino , Humanos , Metronidazol/farmacología , Ratones , Vaginitis por Trichomonas/parasitología , Células Vero
14.
Curr Drug Targets ; 21(16): 1672-1686, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32753007

RESUMEN

Female genital tract infections have a high incidence among different age groups and represent an important impact on public health. Among them, vaginitis refers to inflammation of the vulva and/or vagina due to the presence of pathogens that cause trichomoniasis, bacterial vaginosis, and vulvovaginal candidiasis. Several discomforts are associated with these infections, as well as pregnancy complications and the facilitation of HIV transmission and acquisition. The increasing resistance of microorganisms to drugs used in therapy is remarkable, since women report the recurrence of these infections and associated comorbidities. Different resistant mechanisms already described for the drugs used in the therapy against Trichomonas vaginalis, Candida spp., and Gardnerella vaginalis, as well as aspects related to pathogenesis and treatment, are discussed in this review. This study aims to contribute to drug design, avoiding therapy ineffectiveness due to drug resistance. Effective alternative therapies to treat vaginitis will reduce the recurrence of infections and, consequently, the high costs generated in the health system, improving women's well-being.


Asunto(s)
Farmacorresistencia Microbiana/fisiología , Vaginitis/tratamiento farmacológico , Animales , Antiinfecciosos/farmacología , Antiinfecciosos/uso terapéutico , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/microbiología , Femenino , Humanos , Tricomoniasis/tratamiento farmacológico , Tricomoniasis/microbiología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/microbiología , Vaginitis/microbiología
15.
Eur J Pharm Sci ; 151: 105379, 2020 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-32473199

RESUMEN

Trichomonas vaginalis infection is the STI most common worldwide. Indole-3-carbinol (I3C) is a phytochemical presenting promising biological activities. In this study, design, formulation, and evaluation of a vaginal hydrogel containing I3C-loaded nanocapsules for the treatment of trichomoniasis have been investigated. Nanocapsules of Eudragit® RS100 and rosehip oil containing I3C (NC-I3C) were prepared by interfacial deposition of preformed polymer method. In vitro evaluations showed that free I3C (IC50 = 3.36 µg/mL) was able to reduce the trophozoites viability at higher concentrations (3.13 and 6.25 µg/mL), while nanoencapsulation (IC50 = 2.09 µg/mL) reduced the viability at all concentrations evaluated. Comparing free and nanoencapsulated I3C, we observe that nanoencapsulation improved anti-T. vaginalis activity. In order to obtain a formulation for vaginal administration, hydrogels (HG-NC-I3C) were prepared by thickening the NC-I3C with gellan gum. HG-NC-I3C presented particle size below 195 nm, low polydispersity index (<0.2), I3C content = 0.50 ± 0.01 mg/g, pH = 7.05, non-Newtonian pseudoplastic flow behavior and exhibited mucoadhesion to cow's vaginal mucosa. Evaluation of irritation potential by chorioallantoic membrane method indicated that the formulations are considered non-irritating. Besides that, permeation through the cow's vaginal mucosa showed that nanoencapsulation promoted I3C controlled release. This way, the developed HG-NC-I3C can be considered a promising approach for trichomoniasis treatment through vaginal administration.


Asunto(s)
Nanocápsulas , Tricomoniasis , Animales , Bovinos , Femenino , Hidrogeles , Indoles , Polisacáridos Bacterianos
16.
Food Res Int ; 111: 661-673, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30007730

RESUMEN

Propolis, a resin produced by bees, is widely used in industrial products, including food, cosmetics, supplements, and pharmaceuticals. Extracts (ethanolic and hydroethanolic) and fractions, yielded by accelerated solvent extraction methodology, were obtained from different samples of Brazilian brown propolis (BBP). They were evaluated for antioxidant capacity, antibacterial, antibiofilm, and anti-Trichomonas vaginalis activities. The metabolomics profiling was determined by LC-DAD-MS and an innovative application of statistical analyses (univariate and chemometrics) was applied to correlate chemical compounds with biological activities. Eighty-six compounds were identified, including phenylpropanoic acids, flavonoids, chlorogenic acids, and prenylated phenylpropanoic acids. Propolis-fractions killed about 93% of Staphylococcus aureus in biofilm (at concentration of 125 µg/mL), showed activity against T. vaginalis with MIC at 400 µg/mL and significative antioxidant capacity (IC50 2.32-3.80 µg/mL). Propolis extracts and fractions did not show antibacterial and antibiofilm activities against Pseudomonas aeruginosa. The prenylated phenylpropanoic acids positively correlated with both the antibiofilm (S. aureus) and anti-T. vaginalis activities, such as the metabolites artepillin C, drupanin, and baccharin.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Própolis/química , Staphylococcus aureus/efectos de los fármacos , Trichomonas vaginalis/efectos de los fármacos , Animales , Antioxidantes/análisis , Abejas , Brasil , Cromatografía Líquida de Alta Presión/métodos , Cinamatos/farmacología , Suplementos Dietéticos , Flavonoides , Metabolómica , Pruebas de Sensibilidad Microbiana , Fenilpropionatos/farmacología , Própolis/farmacología , Pseudomonas aeruginosa/efectos de los fármacos , Tricotecenos/farmacología
17.
Chem Biol Drug Des ; 90(5): 811-819, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28390095

RESUMEN

Trichomonas vaginalis causes trichomoniasis, a neglected sexually transmitted disease. Due to severe health consequences and treatment failure, new therapeutic alternatives are crucial. Phloroglucinols from southern Brazilian Hypericum species demonstrated anti-T. vaginalis and anti-Leishmania amazonensis activities. The modulation of biochemical pathways involved in the control of inflammatory response by ectonucleotidases, NTPDase, and ecto-5'-nucleotidase represents new targets for combating protozoa. This study investigated the activity of phloroglucinol derivatives of Hypericum species from southern Brazil against T. vaginalis as well as its ability on modulating parasite ectonucleotidases and, consequently, immune parameters through ATP and adenosine effects. Phloroglucinol derivatives screening revealed activity for isoaustrobrasilol B (IC50 38 µm) with no hemolytic activity. Although the most active compound induced cytotoxicity against a mammalian cell lineage, the in vivo model evidenced absence of toxicity. Isoaustrobrasilol B significantly inhibited NTPDase and ecto-5'-nucleotidase activities, and the immune modulation attributed to extracellular nucleotide accumulation was evaluated. The production of ROS and IL-6 by T. vaginalis-stimulated neutrophils was not affected by the treatment. Conversely, IL-8 levels were significantly enhanced. The associative mechanism of trophozoites death and ectonucleotidases modulation by isoaustrobrasilol B may increase the susceptibility of T. vaginalis to host innate immune cell like neutrophils consequently, contributing to parasite clearance.


Asunto(s)
Antiparasitarios/farmacología , Floroglucinol/análogos & derivados , Vaginitis por Trichomonas/tratamiento farmacológico , Trichomonas vaginalis/efectos de los fármacos , Antiparasitarios/química , Línea Celular , Femenino , Humanos , Hidrólisis/efectos de los fármacos , Hypericum/química , Nucleótidos/metabolismo , Floroglucinol/química , Floroglucinol/farmacología , Vaginitis por Trichomonas/parasitología , Trichomonas vaginalis/fisiología
18.
Biomed Pharmacother ; 95: 847-855, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28903180

RESUMEN

Human and bovine trichomoniasis are sexually transmitted diseases (STD) caused by Trichomonas vaginalis and Tritrichomonas foetus, respectively. Human trichomoniasis is the most common non-viral STD in the world and bovine trichomoniasis causes significant economic losses to breeders. Considering the significant impact of the infections caused by these protozoa and the treatment failures, the search for new therapeutic alternatives becomes crucial. In this study the effect of diamines and amino alcohols in the in vitro viability of trichomonads was evaluated. Screening demonstrated the high activity of diamine 4 against these protozoa. Although cytotoxicity against HMVII cell line and slight hemolysis were observed in vitro, the compound showed no toxic effect on the Galleria mellonella in vivo model. Importantly, diamine 4 was active against both trichomonads species at 6h and 24h of incubation, and these effects was reverted by putrescine, a polyamine, suggesting competition for the same metabolic pathway. These findings indicate that the mechanism of action of diamine 4 is through the polyamine metabolism, a pathway distinct from that presented by metronidazole, the drug usually used to treat trichomoniasis and to which resistance is widely reported. These data demonstrate the importance of diamines as potential novel candidates as anti-T. vaginalis and anti-T. foetus agents.


Asunto(s)
Diaminas/farmacología , Poliaminas/metabolismo , Trichomonas vaginalis/efectos de los fármacos , Tritrichomonas foetus/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Hemólisis/efectos de los fármacos , Humanos , Cinética , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo , Trichomonas vaginalis/crecimiento & desarrollo , Tritrichomonas foetus/crecimiento & desarrollo
19.
Mem. Inst. Oswaldo Cruz ; 110(7): 877-883, Nov. 2015. tab, graf
Artículo en Inglés | LILACS | ID: lil-764587

RESUMEN

Trichomonas vaginalis is a flagellate protozoan that parasitises the urogenital human tract and causes trichomoniasis. During the infection, the acquisition of nutrients, such as iron and purine and pyrimidine nucleosides, is essential for the survival of the parasite. The enzymes for purinergic signalling, including adenosine deaminase (ADA), which degrades adenosine to inosine, have been characterised in T. vaginalis. In the evaluation of the ADA profile in different T. vaginalisisolates treated with different iron sources or with limited iron availability, a decrease in activity and an increase in ADA gene expression after iron limitation by 2,2-bipyridyl and ferrozine chelators were observed. This supported the hypothesis that iron can modulate the activity of the enzymes involved in purinergic signalling. Under bovine serum limitation conditions, no significant differences were observed. The results obtained in this study allow for the assessment of important aspects of ADA and contribute to a better understanding of the purinergic system in T. vaginalis and the role of iron in establishing infection and parasite survival.


Asunto(s)
Animales , Bovinos , Femenino , Humanos , Adenosina Desaminasa/metabolismo , Quelantes del Hierro/farmacología , Trichomonas vaginalis/efectos de los fármacos , Trichomonas vaginalis/enzimología , Adenosina Desaminasa/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Trichomonas vaginalis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA