Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Am Stat Assoc ; 118(544): 2521-2532, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38501061

RESUMEN

We aim at modeling the appearance of distinct tags in a sequence of labeled objects. Common examples of this type of data include words in a corpus or distinct species in a sample. These sequential discoveries are often summarized via accumulation curves, which count the number of distinct entities observed in an increasingly large set of objects. We propose a novel Bayesian method for species sampling modeling by directly specifying the probability of a new discovery, therefore, allowing for flexible specifications. The asymptotic behavior and finite sample properties of such an approach are extensively studied. Interestingly, our enlarged class of sequential processes includes highly tractable special cases. We present a subclass of models characterized by appealing theoretical and computational properties, including one that shares the same discovery probability with the Dirichlet process. Moreover, due to strong connections with logistic regression models, the latter subclass can naturally account for covariates. We finally test our proposal on both synthetic and real data, with special emphasis on a large fungal biodiversity study in Finland. Supplementary materials for this article are available online.

2.
Ann Appl Stat ; 16(4): 2369-2395, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36425314

RESUMEN

Reliably learning group structures among nodes in network data is challenging in several applications. We are particularly motivated by studying covert networks that encode relationships among criminals. These data are subject to measurement errors, and exhibit a complex combination of an unknown number of core-periphery, assortative and disassortative structures that may unveil key architectures of the criminal organization. The coexistence of these noisy block patterns limits the reliability of routinely-used community detection algorithms, and requires extensions of model-based solutions to realistically characterize the node partition process, incorporate information from node attributes, and provide improved strategies for estimation and uncertainty quantification. To cover these gaps, we develop a new class of extended stochastic block models (esbm) that infer groups of nodes having common connectivity patterns via Gibbs-type priors on the partition process. This choice encompasses many realistic priors for criminal networks, covering solutions with fixed, random and infinite number of possible groups, and facilitates the inclusion of node attributes in a principled manner. Among the new alternatives in our class, we focus on the Gnedin process as a realistic prior that allows the number of groups to be finite, random and subject to a reinforcement process coherent with criminal networks. A collapsed Gibbs sampler is proposed for the whole esbm class, and refined strategies for estimation, prediction, uncertainty quantification and model selection are outlined. The esbm performance is illustrated in realistic simulations and in an application to an Italian mafia network, where we unveil key complex block structures, mostly hidden from state-of-the-art alternatives.

3.
Sci Rep ; 12(1): 14952, 2022 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056152

RESUMEN

Artificial Intelligence (AI) systems are precious support for decision-making, with many applications also in the medical domain. The interaction between MDs and AI enjoys a renewed interest following the increased possibilities of deep learning devices. However, we still have limited evidence-based knowledge of the context, design, and psychological mechanisms that craft an optimal human-AI collaboration. In this multicentric study, 21 endoscopists reviewed 504 videos of lesions prospectively acquired from real colonoscopies. They were asked to provide an optical diagnosis with and without the assistance of an AI support system. Endoscopists were influenced by AI ([Formula: see text]), but not erratically: they followed the AI advice more when it was correct ([Formula: see text]) than incorrect ([Formula: see text]). Endoscopists achieved this outcome through a weighted integration of their and the AI opinions, considering the case-by-case estimations of the two reliabilities. This Bayesian-like rational behavior allowed the human-AI hybrid team to outperform both agents taken alone. We discuss the features of the human-AI interaction that determined this favorable outcome.


Asunto(s)
Inteligencia Artificial , Toma de Decisiones Clínicas , Teorema de Bayes , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA