Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 537(7622): 634-638, 2016 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-27525505

RESUMEN

Elongation of rod-shaped bacteria is mediated by a dynamic peptidoglycan-synthetizing machinery called the Rod complex. Here we report that, in Bacillus subtilis, this complex is functional in the absence of all known peptidoglycan polymerases. Cells lacking these enzymes survive by inducing an envelope stress response that increases the expression of RodA, a widely conserved core component of the Rod complex. RodA is a member of the SEDS (shape, elongation, division and sporulation) family of proteins, which have essential but ill-defined roles in cell wall biogenesis during growth, division and sporulation. Our genetic and biochemical analyses indicate that SEDS proteins constitute a family of peptidoglycan polymerases. Thus, B. subtilis and probably most bacteria use two distinct classes of polymerase to synthesize their exoskeleton. Our findings indicate that SEDS family proteins are core cell wall synthases of the cell elongation and division machinery, and represent attractive targets for antibiotic development.


Asunto(s)
Bacillus subtilis/enzimología , Proteínas Bacterianas/metabolismo , Pared Celular/metabolismo , Peptidoglicano Glicosiltransferasa/metabolismo , Peptidoglicano/biosíntesis , Polimerizacion , Antibacterianos/farmacología , Bacillus subtilis/citología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , División Celular , Pared Celular/química , Diseño de Fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Mutación , Oligosacáridos/farmacología , Proteínas de Unión a las Penicilinas/clasificación , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Fenotipo
2.
Mol Microbiol ; 108(1): 45-62, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29363854

RESUMEN

Sporulation in Bacillus subtilis is a paradigm of bacterial development, which involves the interaction between a larger mother cell and a smaller forespore. The mother cell and the forespore activate different genetic programs, leading to the production of sporulation-specific proteins. A critical gap in our understanding of sporulation is how vegetative proteins, made before sporulation initiation, contribute to spore formation. Here we present a system, spatiotemporally regulated proteolysis (STRP), which enables the rapid, developmentally regulated degradation of target proteins, thereby providing a suitable method to dissect the cell- and developmental stage-specific role of vegetative proteins. STRP has been used to dissect the role of two major vegetative sigma factors, σH and σA , during sporulation. The results suggest that σH is only required in predivisional cells, where it is essential for sporulation initiation, but that it is dispensable during subsequent steps of spore formation. However, evidence has been provided that σA plays different roles in the mother cell, where it replenishes housekeeping functions, and in the forespore, where it plays an unexpected role in promoting spore germination and outgrowth. Altogether, the results demonstrate that STRP has the potential to provide a comprehensive molecular dissection of every stage of sporulation, germination and outgrowth.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteolisis , Factor sigma/metabolismo , Esporas Bacterianas/metabolismo , Secuencia de Aminoácidos , Bacillus subtilis/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , División Celular , Recuento de Colonia Microbiana , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Microscopía Fluorescente , Microscopía de Contraste de Fase , Factor sigma/química , Factor sigma/genética , Esporas Bacterianas/genética
3.
Sci Adv ; 7(4)2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33523946

RESUMEN

Despite intensive research, the role of metabolism in bacterial sporulation remains poorly understood. Here, we demonstrate that Bacillus subtilis sporulation entails a marked metabolic differentiation of the two cells comprising the sporangium: the forespore, which becomes the dormant spore, and the mother cell, which dies as sporulation completes. Our data provide evidence that metabolic precursor biosynthesis becomes restricted to the mother cell and that the forespore becomes reliant on mother cell-derived metabolites for protein synthesis. We further show that arginine is trafficked between the two cells and that proposed proteinaceous channels mediate small-molecule intercellular transport. Thus, sporulation entails the profound metabolic reprogramming of the forespore, which is depleted of key metabolic enzymes and must import metabolites from the mother cell. Together, our results provide a bacterial example analogous to progeny nurturing.


Asunto(s)
Proteínas Bacterianas , Esporas Bacterianas , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico , Diferenciación Celular , Esporas Bacterianas/genética , Esporas Bacterianas/metabolismo
4.
Microb Cell ; 8(1): 1-16, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33490228

RESUMEN

Endospore formation has been a rich field of research for more than a century, and has benefited from the powerful genetic tools available in Bacillus subtilis. In this review, we highlight foundational discoveries that shaped the sporulation field, from its origins to the present day, tracing a chronology that spans more than one hundred eighty years. We detail how cell-specific gene expression has been harnessed to investigate the existence and function of intercellular proteinaceous channels in sporulating cells, and we illustrate the rapid progress in our understanding of the cell biology of sporulation in recent years using the process of chromosome translocation as a storyline. Finally, we sketch general aspects of sporulation that remain largely unexplored, and that we envision will be fruitful areas of future research.

5.
ACS Chem Biol ; 11(8): 2222-31, 2016 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-27193499

RESUMEN

Increasing antimicrobial resistance has become a major public health crisis. New antimicrobials with novel mechanisms of action (MOA) are desperately needed. We previously developed a method, bacterial cytological profiling (BCP), which utilizes fluorescence microscopy to rapidly identify the MOA of antimicrobial compounds. BCP is based upon our discovery that cells treated with antibiotics affecting different metabolic pathways generate different cytological signatures, providing quantitative information that can be used to determine a compound's MOA. Here, we describe a system, rapid inhibition profiling (RIP), for creating cytological profiles of new antibiotic targets for which there are currently no chemical inhibitors. RIP consists of the fast, inducible degradation of a target protein followed by BCP. We demonstrate that degrading essential proteins in the major metabolic pathways for DNA replication, transcription, fatty acid biosynthesis, and peptidoglycan biogenesis in Bacillus subtilis rapidly produces cytological profiles closely matching that of antimicrobials targeting the same pathways. Additionally, RIP and antibiotics targeting different steps in fatty acid biosynthesis can be differentiated from each other. We utilize RIP and BCP to show that the antibacterial MOA of four nonsteroidal anti-inflammatory antibiotics differs from that proposed based on in vitro data. RIP is a versatile method that will extend our knowledge of phenotypes associated with inactivating essential bacterial enzymes and thereby allow for screening for molecules that inhibit novel essential targets.


Asunto(s)
Antibacterianos/farmacología , Bacillus subtilis/efectos de los fármacos , Antiinflamatorios no Esteroideos/farmacología , Proteínas Bacterianas/metabolismo , Replicación del ADN , Análisis Discriminante , Ácidos Grasos/biosíntesis , Pruebas de Sensibilidad Microbiana , Microscopía Fluorescente , Transcripción Genética
6.
Curr Biol ; 24(3): 287-92, 2014 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-24440393

RESUMEN

SMC condensin complexes play a central role in organizing and compacting chromosomes in all domains of life [1, 2]. In the bacterium Bacillus subtilis, cells lacking SMC are viable only during slow growth and display decondensed chromosomes, suggesting that SMC complexes function throughout the genome [3, 4]. Here, we show that rapid inactivation of SMC or its partner protein ScpB during fast growth leads to a failure to resolve newly replicated origins and a complete block to chromosome segregation. Importantly, the loss of origin segregation is not due to an inability to unlink precatenated sister chromosomes by Topoisomerase IV. In support of the idea that ParB-mediated recruitment of SMC complexes to the origin is important for their segregation, cells with reduced levels of SMC that lack ParB are severely impaired in origin resolution. Finally, we demonstrate that origin segregation is a task shared by the condensin complex and the parABS partitioning system. We propose that origin-localized SMC constrains adjacent DNA segments along their lengths, drawing replicated origins in on themselves and away from each other. This SMC-mediated lengthwise condensation, bolstered by the parABS system, drives origin segregation.


Asunto(s)
Bacillus subtilis/fisiología , Proteínas Bacterianas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Segregación Cromosómica/fisiología , Mitosis/fisiología , Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al ADN/metabolismo , Microscopía Fluorescente , Complejos Multiproteicos/metabolismo , Origen de Réplica/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA