RESUMEN
BACKGROUND: Temperament is an important production trait in cattle and multiple strategies had been developed to generate molecular markers to assist animal selection. As nonsynonymous single nucleotide polymorphisms are markers with the potential to affect gene functions, they could be useful to predict phenotypic effects. Genetic selection of less stress-responsive, temperamental animals is desirable from an economic and welfare point of view. METHODS AND RESULTS: Two nonsynonymous single nucleotide polymorphisms identified in HTR1B and SLC18A2 candidate genes for temperament were analyzed in silico to determine their effects on protein structure. Those nsSNPs allowing changes in proteins were selected for a temperament association analysis in a Brahman population. Transversion effects on protein structure were evaluated in silico for each amino acid change model, revealing structural changes in the proteins of the HTR1B and SLC18A2 genes. The selected nsSNPs were genotyped in a Brahman population (n = 138), and their genotypic effects on three temperament traits were analyzed: exit velocity, pen score, and temperament score. Only the SNP rs209984404-HTR1B (C/A) showed a significant association (P = 0.0144) with pen score. The heterozygous genotype showed a pen score value 1.17 points lower than that of the homozygous CC genotype. CONCLUSION: The results showed that in silico analysis could direct the selection of nsSNPs with the potential to change the protein. Non-synonymous single nucleotide polymorphisms causing structural changes and reduced protein stability were identified. Only rs209984404-HTR1B shows that the allele affecting protein stability was associated with the genotype linked to docility in cattle.
Asunto(s)
Polimorfismo de Nucleótido Simple , Temperamento , Bovinos , Animales , Genotipo , Alelos , FenotipoRESUMEN
Resequencing of Myostatin, Growth Hormone, Follistatin-A-like, Insulin-like Growth Factor I (IGF-I) and Myogenin (MYOG) genes was completed to discover novel genetic variations and assess non synonymous (ns) polymorphisms (SNPs) effect on growth related traits of channel catfish. Wild and farmed animals were used as a discovering population. Resequencing lead to the identification of 59 new variants in the five analyzed genes; 66% found in introns and 34% in coding regions. From coding regions, 14 variants were synonyms and six were ns variations. A mutation rate of one in 129 bp was estimated. Four ns variations were selected for validation and association analysis. In IGF-I two ns polymorphisms, at IGF-I19 the G wild type allele was fixed in population and for IGF-I63 the C allele had a frequency of 0.972 and for mutate allele G of 0.027. In MYOG two ns SNPs were assessed. MYOG131 presented a frequency of alleles T and A, of 0.754 and 0.246, respectively and MYOG233, with a frequency of G and C of 0.775 and 0.225, respectively. Only MYOG131 (g.529T>A) was significantly associated (P < 0.04) to some growth traits. Results suggest MYOG131 g.529T>A as candidate locus for genetic enhancement of growth traits in channel catfish.
Asunto(s)
Crecimiento y Desarrollo/genética , Ictaluridae/genética , Polimorfismo de Nucleótido Simple , Carácter Cuantitativo Heredable , Animales , Proteínas Relacionadas con la Folistatina/genética , Hormona del Crecimiento/genética , Ictaluridae/crecimiento & desarrollo , Factor I del Crecimiento Similar a la Insulina/genética , Miogenina/genética , Miostatina/genéticaRESUMEN
Charolais cattle are one of the most important breeds for meat production worldwide; in México, its selection is mainly made by live weight traits. One strategy for mapping important genomic regions that might influence productive traits is the identification of signatures of selection. This type of genomic features contains loci with extended linkage disequilibrium (LD) and homozygosity patterns that are commonly associated with sites of quantitative trait locus (QTL). Therefore, the objective of this study was to identify the signatures of selection in Charolais cattle genotyped with the GeneSeek Genomic Profiler Bovine HD panel consisting of 77 K single nucleotide polymorphisms (SNPs). A total 61,311 SNPs and 819 samples were used for the analysis. Identification of signatures of selection was carried out using the integrated haplotype score (iHS) methodology implemented in the rehh R package. The top ten SNPs with the highest piHS values were located on BTA 4, 5, 6 and 14. By identifying markers in LD with top ten SNPs, the candidate regions defined were mapped to 52.8-59.3 Mb on BTA 4; 67.5-69.3 on BTA 5; 39.5-41.0 Mb on BTA 6; and 26.4-29.6 Mb on BTA 14. The comparison of these candidate regions with the bovine QTLdb effectively confirmed the association (p < 0.05) with QTL related to growth traits and other important productive traits. The genomic regions identified in this study indicated selection for growth traits on the Charolais population via the conservation of haplotypes on various chromosomes. These genomic regions and their associated genes could serve as the basis for haplotype association studies and for the identification of causal genes related to growth traits.
Asunto(s)
Bovinos/genética , Estudio de Asociación del Genoma Completo , Sitios de Carácter Cuantitativo , Animales , Cromosomas de los Mamíferos , Genotipo , Carne , Polimorfismo de Nucleótido SimpleRESUMEN
BACKGROUND: For most domestic animal species, including bovines, it is difficult to identify causative genetic variants involved in economically relevant traits. The candidate gene approach is efficient because it investigates genes that are expected to be associated with the expression of a trait and defines whether the genetic variation present in a population is associated with phenotypic diversity. A potential limitation of this approach is the identification of candidates. This study used a bioinformatics approach to identify candidate genes via a search guided by a functional interaction network. RESULTS: A functional interaction network tool, BosNet, was constructed for Bos taurus. Predictions for candidate genes were performed using the guilt-by-association principle in BosNet. Association analyses identified five novel markers within BosNet-prioritized genes that had significant effects on different growth traits in Charolais and Brahman cattle. CONCLUSIONS: BosNet is an excellent tool for the identification of single nucleotide polymorphisms that are potentially associated with complex traits.
Asunto(s)
Biología Computacional/métodos , Epistasis Genética , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Carácter Cuantitativo Heredable , Alelos , Animales , Cruzamiento , Bovinos , Frecuencia de los Genes , Genómica , GenotipoRESUMEN
The objective of the present experiment work was to evaluate the effect of the inclusion of genomic information on the additive genetic variance of birth weight (BW) of Charolais cattle in Mexico. Variance components and heritability were estimated using four linear models. The first model was the base model (BM) from which single and composite effects of selected single-nucleotide polymorphism (SNP) markers were evaluated (BM1, BM2, and a composite BM3). Genetic markers were included in a regression model and analyzed by stepwise regression against adjusted BW from a panel of growth-related traits candidate gene markers. After two regression rounds, two SNPs (R (2) > 0.02) were chosen to include into the animal models as fixed effects. Growth hormone receptor gene GHR 4.2 and GHR 6.1 SNPs were selected from a panel of 39 SNPs. GHR 4.2 had a negligible effect on BW, whilst GHR6.1, interestingly, explained â¼9 % of genetic variance (p = 0.0877) with an αG>A = 0.509. The inclusion of markers in M2 and M3 reduced 19 and 15 % of the additive genetic variance, respectively. Both adjusted significantly better the linear model (LRT = p < 0.01). Results obtained suggest that the previous selection of markers in a candidate gene approach and subsequent inclusion of selected SNPs into animal model might provide a better fit, avoiding the overestimation of genetic variance components and breeding values for BW.
Asunto(s)
Peso al Nacer/genética , Bovinos/crecimiento & desarrollo , Bovinos/genética , Polimorfismo de Nucleótido Simple , Aumento de Peso/genética , Animales , Marcadores Genéticos , Masculino , México , Modelos Genéticos , FenotipoRESUMEN
Comprehension of the genetic basis of temperament has been improved by recent advances in the identification of genes and genetic variants. However, due to the complexity of the temperament traits, the elucidation of the genetic architecture of temperament is incomplete. A systematic review was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement to analyze candidate genes related to bovine temperament, using bovine as the population, SNPs and genes as the exposure, and temperament test as the outcome, as principal search terms for population, exposure, and outcome (PEO) categories to define the scope of the search. The search results allowed the selection of 36 articles after removing duplicates and filtering by relevance. One hundred-two candidate genes associated with temperament traits were identified. The genes were further analyzed to construct an interaction network using the STRING database, resulting in 113 nodes and 346 interactions and the identification of 31 new candidate genes for temperament. Notably, the main genes identified were SST and members of the Kelch family. The candidate genes displayed interactions with pathways associated with different functions such as AMPA receptors, hormones, neuronal maintenance, protein signaling, neuronal regulation, serotonin synthesis, splicing, and ubiquitination activities. These new findings demonstrate the complexity of interconnected biological processes that regulate behavior and stress response in mammals. This insight now enables our targeted analysis of these newly identified temperament candidate genes in bovines.
Asunto(s)
Redes Reguladoras de Genes , Polimorfismo de Nucleótido Simple , Temperamento , Bovinos/genética , Animales , Mapas de Interacción de Proteínas/genéticaRESUMEN
The Panel on Food Additives and Flavourings (FAF) provides a scientific opinion re-evaluating the safety of the two food additives argon (E 938) and helium (E 939). Argon (Ar) and helium (He) are two noble gases, highly stable single atoms. Their chemical inertness is well known. Their physicochemical properties have served as a basis for their previous evaluations by SCF and JECFA, which have considered the use of these food additives safe even in the absence of a toxicological evaluation. No business operator or other interested party provided information in response to the call for data published by EFSA to support the re-evaluation of these two food additives with respect to their identity and specifications, manufacturing process (including the identification and quantification of potential impurities) and how they are applied to food to exert their technological function. One business operator replied to the call for data issued by EFSA reporting use levels of E 938 as a packaging gas in one food category. Based on their physicochemical properties, both gases are considered by the Panel to be of low toxicological concern when used as food additives. No information was available on the potential presence of impurities of toxicological concern resulting from the manufacturing process(es) applied to the production of the food additives E 938 and E 939. The Panel however noted that a minimum purity of 99.0% is required to comply with existing specifications. The Panel concluded that the use of argon (E 938) and helium (E 939) as food additives does not raise a safety concern. The Panel recommended an amendment of the existing EU specifications to introduce the respective CAS numbers.
RESUMEN
Quillaia extract (E 999) was re-evaluated in 2019 by the EFSA Panel on Food Additives and Flavourings (FAF). EFSA derived an acceptable daily intake (ADI) of 3 mg saponins/kg bw per day for E 999. Following a European Commission call for data to submit data to fill the data gaps, the present follow-up opinion assesses data provided by interested business operators (IBOs) to support an amendment of the EU specifications for E 999. Additionally, this opinion deals with the assessment of the proposed extension of use for E 999 in food supplements supplied in a solid and liquid form, excluding food supplements for infants and young children and, as a carrier in botanical nutrients. The Panel concluded that the proposed extension of use, if authorised, could result in an exceedance of the ADI at the maximum of the ranges of the mean for children, adolescents and the elderly, and for all populations at the 95th percentile. An additional proposed extension of use for E 999 to be used as a carrier for glazing agents on entire fresh fruits and vegetables has been received. Since no information on the proposed use levels of E 999 on a saponins content basis has been provided by this applicant, the Panel was not able to evaluate the safety of this extension of use. Considering the technical data submitted, the Panel recommended some modifications of the existing EU specifications for E 999, mainly to lower the limits for lead, mercury and arsenic and to include a maximum limit for cadmium and for calcium oxalate. The Panel also recommended that the limits would be expressed on a saponins basis. The Panel proposed to revise the definition of E 999 to better describe the composition in a qualitative way.
RESUMEN
The EFSA Panel on Food Additive and Flavourings (FAF Panel) provides a scientific opinion on the safety of soy leghemoglobin from genetically modified Komagataella phaffii as a food additive in accordance with Regulation (EC) No 1331/2008. The proposed food additive, LegH Prep, is intended to be used as a colour in meat analogue products. The yeast Komagataella phaffii strain MXY0541 has been genetically modified to produce soy leghemoglobin; the safety of the genetic modification is under assessment by the EFSA GMO Panel (EFSA-GMO-NL-2019-162). The amount of haem iron provided by soy leghemoglobin from its proposed uses in meat analogue products is comparable to that provided by similar amounts of different types of meat. The exposure to iron from the proposed food additive, both at the mean and 95th percentile exposure, will be below the 'safe levels of intake' established by the NDA Panel for all population groups. Considering that the components of the proposed food additive will be digested to small peptide, amino acids and haem B; the recipient (non GM) strain qualifies for qualified presumption of safety status; no genotoxicity concern has been identified and no adverse effects have been identified at the highest dose tested in the available toxicological studies, the Panel concluded that there was no need to set a numerical acceptable daily intake (ADI) and that the food additive does not raise a safety concern at the proposed use in food category 12.9 and maximum use level. The Panel concluded that the use of soy leghemoglobin from genetically modified Komagataella phaffii MXY0541 as a new food additive does not raise a safety concern at the proposed use and use level. This safety evaluation of the proposed food additive remains provisional subject to the ongoing safety assessment of the genetic modification of the production strain by the GMO Panel (EFSA-GMO-NL-2019-162).
RESUMEN
The present opinion deals with the re-evaluation of shellac (E 904) when used as a food additive and with the new application on the extension of use of shellac (E 904) in dietary foods for special medical purposes. The Panel derived an acceptable daily intake (ADI) of 4 mg/kg body weight (bw) per day for wax-free shellac (E 904) produced by physical decolouring, based on a NOAEL of 400 mg/kg bw per day and applying an uncertainty factor of 100. The Panel concluded that the ADI of 4 mg/kg bw per day should be considered temporary for wax-free shellac (E 904) produced by chemical bleaching, while new data are generated on the identity and levels of the organochlorine impurities in E 904. This ADI is not applicable for wax-containing shellac as a food additive. For several age groups, the ADI was exceeded at the 95th percentile in the non-brand-loyal exposure assessment scenario and maximum level exposure assessment scenario. Considering the low exceedance and the fact that both the exposure estimation and the toxicological evaluation of shellac were conservative, the panel concluded that the calculated exceedance of the ADI does not indicate a safety concern. The Panel recommended to the European Commission separating specifications for E 904 depending on the manufacturing process, chemical bleaching and physical decolouring, because they result in different impurities; revising the definition of the food additive to include a description of each manufacturing process; deleting information on wax-containing shellac from the EU specifications; revising the acid value for wax-free shellac produced by chemical bleaching; lowering the maximum limit for lead; to consider introducing limits for other toxic elements potentially present in shellac; including a maximum limit for chloroform and total inorganic chloride in the EU specification for shellac produced by chemical bleaching.
RESUMEN
The present opinion is the follow-up of the conclusions and recommendations of the Scientific Opinion on the re-evaluation of silicon dioxide (E 551) as a food additive relevant to the safety assessment for all age groups. In addition, the risk assessment of silicon dioxide (E 551) for its use in food for infants below 16 weeks of age is performed. Based on the newly available information on the characterisation of the SAS used as E 551 and following the principles of the 2021 EFSA Guidance on Particle-TR, the conventional safety assessment has been complemented with nano-specific considerations. Given the uncertainties resulting from the limitations of the database and in the absence of genotoxicity concern, the Panel considered that it is not appropriate to derive an acceptable daily intake (ADI) but applied the margin of exposure (MOE) approach for the risk assessment. The Panel concluded that the MOE should be at least 36 for not raising a safety concern. The calculated MOEs considering the dietary exposure estimates for all population groups using the refined non-brand loyal scenario, estimated at the time of the 2018 re-evaluation, were all above 36. The Panel concluded that E 551 does not raise a safety concern in all population groups at the reported uses and use levels. The use of E 551 in food for infants below 16 weeks of age in FC 13.1.1 and FC 13.1.5.1 does not raise a safety concern at the current exposure levels. The Panel also concluded that the technical data provided support an amendment of the specifications for E 551 laid down in Commission Regulation (EU) No 231/2012. The paucity of toxicological studies with proper dispersion protocol (with the exception of the genotoxicity studies) creates uncertainty in the present assessment of the potential toxicological effects related to the exposure to E 551 nanosize aggregates.
RESUMEN
Flor formation and flor endurance have been related to ability by Saccharomyces cerevisiae flor yeasts to resist hostile conditions such as oxidative stress and the presence of acetaldehyde and ethanol. Ethanol and acetaldehyde toxicity give rise to formation of reactive oxygen species (ROS) and loss of cell viability. Superoxide dismutases Sod1p and Sod2p and other proteins such as Hsp12p are involved in oxidative stress tolerance. In this study, genes SOD1, SOD2, and HSP12 were overexpressed in flor yeast strains FJF206, FJF414 and B16. In the SOD1 and SOD2 transformant strains superoxide dismutases encoded by genes SOD1 and SOD2 increased their specific activity considerably as a direct result of overexpression of genes SOD1 and SOD2, indirectly, catalase, glutathione reductase, and glutathione peroxidase activities increased too. The HSP12 transformant strains showed higher levels of glutathione peroxidase and reductase activities. These transformant strains showed an increase in intracellular glutathione content, a reduction in peroxidized lipid concentration, and higher resistance to oxidative stress conditions. As a result, flor formation by these strains took place more rapidly than by their parental strains, velum being thicker and with higher percentages of viable cells. In addition, a slight decrease in ethanol and glycerol concentrations, and an increase in acetaldehyde were detected in wines matured under velum formed by transformant strains, as compared to their parental strains. In the industry, velum formed by transformant strains with increased viability may result in acceleration of both metabolism and wine aging, thus reducing time needed for wine maturation.
Asunto(s)
Regulación Fúngica de la Expresión Génica , Saccharomyces cerevisiae/genética , Estrés Fisiológico , Vino/microbiología , Glutatión/metabolismo , Cariotipificación , Peroxidación de Lípido , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismoRESUMEN
Glycerol esters of wood rosin (GEWR) (E 445) were re-evaluated in 2018. On the toxicity database and given the absence of reproductive and developmental toxicity data, the acceptable daily intake (ADI) of 12.5 mg/kg body weight (bw) per day for GEWR (E 445) established by the Scientific Committee on Food (SCF) in 1994 was considered temporary. The conclusions of the assessment were restricted to GEWR derived from Pinus palustris and Pinus elliottii and with a chemical composition in compliance with GEWR used in the toxicological testing. Following a European Commission call for data to submit data to fill the data gaps, the present follow-up opinion assesses data provided by interested business operators (IBOs). Considering the technical data submitted by IBOs, the EFSA Panel on Food Additives and Flavourings (FAF Panel) recommended some modifications of the existing EU specifications for E 445, mainly a revision of the definition of the food additive and lowering the limits for toxic elements. Considering the available toxicological database evaluated during the re-evaluation of E 445 by the ANS Panel in 2018, and the toxicological studies submitted by the IBOs, the Panel established an ADI of 10 mg/kg bw per day based on the no observed adverse effect level (NOAEL) of 976 mg/kg bw per day from the newly available dietary reproduction/developmental toxicity screening study in rats and applying an uncertainty factor of 100. Since GEWR from P. palustris and P. elliottii were tested in the toxicity studies considered to establish the ADI and in the absence of detailed information on the chemical composition (major constituents) in GEWR generated from other Pinus species, thus not allowing read across, the ADI is restricted to the GEWR (E 445) manufactured from P. palustris and P. elliottii. The Panel concluded that there was no safety concern for the use of GEWR (E 445), at either the maximum permitted levels or at the reported uses and use levels.
RESUMEN
Locust bean gum (E 410) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of locust bean gum (E 410) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population, including the safety assessment for FC 13.1.5.1 and 13.1.5.2 (Dietary foods for babies and young children for special medical purposes as defined in directive 1999/21/EC). The process involved the publication of a call for data. Based on the received data, the Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for locust bean gum (E 410) laid down in Commission Regulation (EU) No 231/2012. The Panel identified a reference point of 1,400 mg/kg bw per day based on reduced blood zinc levels in a piglet study. It applied the margin of exposure (MoE) for the safety assessment of locust bean gum (E 410) when used as a food additive in FC 13.1.5.1 and 13.1.5.2. The Panel concluded that a MoE above 1 would not raise a safety concern. A MoE above 1 was obtained for some of the scenarios and exposure levels for infants. For toddlers (consumers only of food for special medical purposes), the MoE was above 1 for all exposure levels.
RESUMEN
Indigo carmine (E 312) was re-evaluated in 2014 by the EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). The ANS Panel confirmed the acceptable daily intake (ADI) of 5 mg/kg body weight (bw) per day for indigo carmine allocated by JECFA (1975). The ANS Panel indicated that the ADI was applicable to a material with a purity of 93% pure colouring and manufactured using processes resulting in comparable residuals as material used in the Borzelleca et al. studies (1985, 1986) and Borzelleca and Hogan (1985) which were the basis for deriving the ADI. The ANS Panel considered that any extension of the ADI to indigo carmine of lower purity and/or manufactured using a different process would require new data to address the adverse effects on the testes observed in the Dixit and Goyal (2013) study. Following a European Commission call for data to submit data to fill the data gaps, an IBO submitted technical and toxicological data. Considering the technical data, the EFSA Panel on Food Additives and Flavourings (FAF Panel) recommended some modifications of the existing EU specifications for E 132, mainly to lower the limits for toxic elements. Considering the toxicological data, an IBO has submitted a 56-day dietary study to address the adverse effects on testes using a material with 88% purity. The results of this study submitted did not confirm the severe adverse effects observed in the Dixit and Goyal study. Considering all the available information, the Panel confirmed the ADI of 5 mg/kg bw per day for indigo carmine (E 132) disodium salts, meeting the proposed revisions of the specifications (85% minimum for the colouring matter). The Panel concluded that there is no safety concern for the use of indigo carmine (E 132) disodium salts at the reported use levels and submitted analytical data.
RESUMEN
Xanthan gum (E 415) was re-evaluated in 2017 by the former EFSA Panel on Food Additives and Nutrient sources added to Food. As a follow-up to that assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of xanthan gum (E 415) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category (FC) 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants). In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators to provide the requested information to complete the risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for E 415 laid down in Commission Regulation (EU) No 231/2012. Due to the low validity of the available clinical studies, the Panel concluded that a reference point could not be derived from them but the results of the available studies on neonatal piglets could serve to derive a reference point. The Panel calculated the margin of exposure for infants below 16 weeks of age consuming food for special medical purposes (FC 13.1.5.1) for the highest xanthan gum exposure and concluded that there are no safety concerns for the use of xanthan gum (E 415) as a food additive in FC 13.1.5.1.
RESUMEN
The 3' untranslated region has an important role in gene regulation through microRNAs, and it has been estimated that microRNAs regulate up to 50% of coding genes in mammals. With the aim of allelic variant identification of 3' untranslated region microRNA seed sites, the 3' untranslated region was searched for seed sites of four temperament-associated genes (CACNG4, EXOC4, NRXN3, and SLC9A4). The microRNA seed sites were predicted in the four genes, and the CACNG4 gene had the greatest number with 12 predictions. To search for variants affecting the predicted microRNA seed sites, the four 3' untranslated regions were re-sequenced in a Brahman cattle population. Eleven single nucleotide polymorphisms were identified in the CACNG4, and eleven in the SLC9A4. Rs522648682:T>G of the CACNG4 gene was located at the predicted seed site for bta-miR-191. Rs522648682:T>G evidenced an association with both exit velocity (p = 0.0054) and temperament score (p = 0.0097). The genotype TT had a lower mean exit velocity (2.93 ± 0.4 m/s) compared with the TG and GG genotypes (3.91 ± 0.46 m/s and 3.67 ± 0.46 m/s, respectively). The allele associated with the temperamental phenotype antagonizes the seed site, disrupting the bta-miR-191 recognition. The G allele of CACNG4-rs522648682 has the potential to influence bovine temperament through a mechanism associated with unspecific recognition of bta-miR-191.
Asunto(s)
MicroARNs , Bovinos/genética , Animales , MicroARNs/genética , Regiones no Traducidas 3'/genética , Temperamento , Genotipo , Fenotipo , Mamíferos/genéticaRESUMEN
Calcium carbonate (E 170) was re-evaluated in 2011 by the former EFSA Panel on Food Additives and Nutrient sources added to Food (ANS). As a follow-up to this assessment, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of calcium carbonate (E 170) for its uses as a food additive in food for infants below 16 weeks of age belonging to food category 13.1.5.1 (Dietary foods for infants for special medical purposes and special formulae for infants) and as carry over in line with Annex III, Part 5 Section B to Regulation (EC) No 1333/2008. In addition, the FAF Panel was requested to address the issues already identified during the re-evaluation of the food additive when used in food for the general population. The process involved the publication of a call for data to allow the interested business operators (IBOs) to provide the requested information to complete the risk assessment. The Panel concluded that there is no need for a numerical acceptable daily intake (ADI) for calcium carbonate and that, in principle, there are no safety concern with respect to the exposure to calcium carbonate per se at the currently reported uses and use levels in all age groups of the population, including infants below 16 weeks of age. With respect to the calcium intake resulting from the use of E 170 in food for the general population and infants < 16 weeks of age, the Panel concluded that it contributes only to a small part to the overall calcium dietary exposure. However, the unavoidable presence of aluminium in E 170 is of concern and should be addressed. In addition, the Panel concluded that the technical data provided by the IBO support further amendments of the specifications for E 170 laid down in Commission Regulation (EU) No 231/2012.
RESUMEN
Sucrose esters of fatty acids (E 473) was re-evaluated in 2004 by the former EFSA Panel on Food Additives, Flavourings, Processing Aids and Materials in Contact with Food (AFC Panel). In addition, the former EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS Panel) issued scientific opinions on the safety of sucrose esters of fatty acids (E 473) in 2010, 2012 and 2018. As a follow-up to these assessments, the Panel on Food Additives and Flavourings (FAF) was requested to assess the safety of sucrose esters of fatty acids (E 473) for its uses as food additive in food for infants below 16 weeks of age. In addition, the FAF Panel was requested to address the issues already identified by the EFSA AFC and ANS Panels when used in food for the general population. The process involved the publication of calls for data to allow the interested business operators to provide the requested information to complete the risk assessment. The Panel concluded that the technical data provided by the interested business operators support an amendment of the specifications for sucrose esters of fatty acids (E 473) laid down in Commission Regulation (EU) No 231/2012. According to the available information, E 473 is not used in food categories (FCs) 13.1.1 and 13.1.5.1, including all types of food for infants below 16 weeks of age, and in FC 13.1.5.2. As a consequence, an assessment of the safety for the uses of E 473 as food additive in these FCs and age group was not performed. When the updated exposure estimates considering the provided use levels for some food categories are taken into account the estimates of exposure to sucrose esters of fatty acids (E 473) exceeded the group acceptable daily intake (ADI) of 40 mg/kg body weight (bw) per day for many population groups.
RESUMEN
This opinion addresses the re-evaluation of erythritol (E 968) as food additive and an application for its exemption from the laxative warning label requirement as established under Regulation (EU) No 1169/2011. Erythritol is a polyol obtained by fermentation with Moniliella pollinis BC or Moniliella megachiliensis KW3-6, followed by purifications and drying. Erythritol is readily and dose-dependently absorbed in humans and can be metabolised to erythronate to a small extent. Erythritol is then excreted unchanged in the urine. It does not raise concerns regarding genotoxicity. The dataset evaluated consisted of human interventional studies. The Panel considered that erythritol has the potential to cause diarrhoea in humans, which was considered adverse because its potential association with electrolyte and water imbalance. The lower bound of the range of no observed adverse effect levels (NOAELs) for diarrhoea of 0.5 g/kg body weight (bw) was identified as reference point. The Panel considered appropriate to set a numerical acceptable daily intake (ADI) at the level of the reference point. An ADI of 0.5 g/kg bw per day was considered by the Panel to be protective for the immediate laxative effect as well as potential chronic effects, secondary to diarrhoea. The highest mean and 95th percentile chronic exposure was in children (742 mg/kg bw per day) and adolescents (1532 mg/kg bw per day). Acute exposure was maximally 3531 mg/kg bw per meal for children at the 99th percentile. Overall, the Panel considered both dietary exposure assessments an overestimation. The Panel concluded that the exposure estimates for both acute and chronic dietary exposure to erythritol (E 968) were above the ADI, indicating that individuals with high intake may be at risk of experiencing adverse effects after single and repeated exposure. Concerning the new application, the Panel concluded that the available data do not support the proposal for exemption.