Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(2): 233-247.e21, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31978343

RESUMEN

Wnt dependency and Lgr5 expression define multiple mammalian epithelial stem cell types. Under defined growth factor conditions, such adult stem cells (ASCs) grow as 3D organoids that recapitulate essential features of the pertinent epithelium. Here, we establish long-term expanding venom gland organoids from several snake species. The newly assembled transcriptome of the Cape coral snake reveals that organoids express high levels of toxin transcripts. Single-cell RNA sequencing of both organoids and primary tissue identifies distinct venom-expressing cell types as well as proliferative cells expressing homologs of known mammalian stem cell markers. A hard-wired regional heterogeneity in the expression of individual venom components is maintained in organoid cultures. Harvested venom peptides reflect crude venom composition and display biological activity. This study extends organoid technology to reptilian tissues and describes an experimentally tractable model system representing the snake venom gland.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Organoides/crecimiento & desarrollo , Venenos de Serpiente/metabolismo , Células Madre Adultas/metabolismo , Animales , Serpientes de Coral/metabolismo , Perfilación de la Expresión Génica/métodos , Organoides/metabolismo , Glándulas Salivales/metabolismo , Venenos de Serpiente/genética , Serpientes/genética , Serpientes/crecimiento & desarrollo , Células Madre/metabolismo , Toxinas Biológicas/genética , Transcriptoma/genética
2.
Nature ; 621(7977): 188-195, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648854

RESUMEN

γδ T cells are potent anticancer effectors with the potential to target tumours broadly, independent of patient-specific neoantigens or human leukocyte antigen background1-5. γδ T cells can sense conserved cell stress signals prevalent in transformed cells2,3, although the mechanisms behind the targeting of stressed target cells remain poorly characterized. Vγ9Vδ2 T cells-the most abundant subset of human γδ T cells4-recognize a protein complex containing butyrophilin 2A1 (BTN2A1) and BTN3A1 (refs. 6-8), a widely expressed cell surface protein that is activated by phosphoantigens abundantly produced by tumour cells. Here we combined genome-wide CRISPR screens in target cancer cells to identify pathways that regulate γδ T cell killing and BTN3A cell surface expression. The screens showed previously unappreciated multilayered regulation of BTN3A abundance on the cell surface and triggering of γδ T cells through transcription, post-translational modifications and membrane trafficking. In addition, diverse genetic perturbations and inhibitors disrupting metabolic pathways in the cancer cells, particularly ATP-producing processes, were found to alter BTN3A levels. This induction of both BTN3A and BTN2A1 during metabolic crises is dependent on AMP-activated protein kinase (AMPK). Finally, small-molecule activation of AMPK in a cell line model and in patient-derived tumour organoids led to increased expression of the BTN2A1-BTN3A complex and increased Vγ9Vδ2 T cell receptor-mediated killing. This AMPK-dependent mechanism of metabolic stress-induced ligand upregulation deepens our understanding of γδ T cell stress surveillance and suggests new avenues available to enhance γδ T cell anticancer activity.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Neoplasias , Receptores de Antígenos de Linfocitos T gamma-delta , Linfocitos T , Humanos , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Línea Celular , Membrana Celular/metabolismo , Neoplasias/genética , Neoplasias/inmunología , Neoplasias/metabolismo , Receptores de Antígenos de Linfocitos T gamma-delta/inmunología , Receptores de Antígenos de Linfocitos T gamma-delta/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo
3.
EMBO J ; 41(10): e109675, 2022 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-35403737

RESUMEN

Our understanding of the cellular composition and architecture of cancer has primarily advanced using 2D models and thin slice samples. This has granted spatial information on fundamental cancer biology and treatment response. However, tissues contain a variety of interconnected cells with different functional states and shapes, and this complex organization is impossible to capture in a single plane. Furthermore, tumours have been shown to be highly heterogenous, requiring large-scale spatial analysis to reliably profile their cellular and structural composition. Volumetric imaging permits the visualization of intact biological samples, thereby revealing the spatio-phenotypic and dynamic traits of cancer. This review focuses on new insights into cancer biology uniquely brought to light by 3D imaging and concomitant progress in cancer modelling and quantitative analysis. 3D imaging has the potential to generate broad knowledge advance from major mechanisms of tumour progression to new strategies for cancer treatment and patient diagnosis. We discuss the expected future contributions of the newest imaging trends towards these goals and the challenges faced for reaching their full application in cancer research.


Asunto(s)
Imagenología Tridimensional , Neoplasias , Humanos , Imagenología Tridimensional/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/patología
4.
EMBO J ; 38(4)2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30643021

RESUMEN

Organoids are self-organizing 3D structures grown from stem cells that recapitulate essential aspects of organ structure and function. Here, we describe a method to establish long-term-expanding human airway organoids from broncho-alveolar resections or lavage material. The pseudostratified airway organoids consist of basal cells, functional multi-ciliated cells, mucus-producing secretory cells, and CC10-secreting club cells. Airway organoids derived from cystic fibrosis (CF) patients allow assessment of CFTR function in an organoid swelling assay. Organoids established from lung cancer resections and metastasis biopsies retain tumor histopathology as well as cancer gene mutations and are amenable to drug screening. Respiratory syncytial virus (RSV) infection recapitulates central disease features, dramatically increases organoid cell motility via the non-structural viral NS2 protein, and preferentially recruits neutrophils upon co-culturing. We conclude that human airway organoids represent versatile models for the in vitro study of hereditary, malignant, and infectious pulmonary disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/patología , Fibrosis Quística/patología , Células Epiteliales/patología , Técnicas de Cultivo de Órganos/métodos , Organoides/patología , Infecciones por Virus Sincitial Respiratorio/patología , Sistema Respiratorio/patología , Animales , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Células Cultivadas , Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Modelos Animales de Enfermedad , Ensayos de Selección de Medicamentos Antitumorales , Células Epiteliales/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Organoides/metabolismo , Infecciones por Virus Sincitial Respiratorio/virología , Virus Sincitiales Respiratorios/aislamiento & purificación , Sistema Respiratorio/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
5.
Dev Dyn ; 250(11): 1568-1583, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33848015

RESUMEN

BACKGROUND: Nephron progenitor cells (NPCs) undergo a stepwise process to generate all mature nephron structures. Mesenchymal to epithelial transition (MET) is considered a multistep process of NPC differentiation to ensure progressive establishment of new nephrons. However, despite this important role, to date, no marker for NPCs undergoing MET in the nephron exists. RESULTS: Here, we identify LGR6 as a NPC marker, expressed in very early cap mesenchyme, pre-tubular aggregates, renal vesicles, and in segments of S-shaped bodies, following the trajectory of MET. By using a lineage tracing approach in embryonic explants in combination with confocal imaging and single-cell RNA sequencing, we provide evidence for the multiple fates of LGR6+ cells during embryonic nephrogenesis. Moreover, by using long-term in vivo lineage tracing, we show that postnatal LGR6+ cells are capable of generating the multiple lineages of the nephrons. CONCLUSIONS: Given the profound early mesenchymal expression and MET signature of LGR6+ cells, together with the lineage tracing of mesenchymal LGR6+ cells, we conclude that LGR6+ cells contribute to all nephrogenic segments by undergoing MET. LGR6+ cells can therefore be considered an early committed NPC population during embryonic and postnatal nephrogenesis with potential regenerative capability.


Asunto(s)
Nefronas , Células Madre , Diferenciación Celular , Mesodermo , Organogénesis/genética
6.
Nat Methods ; 15(1): 24-26, 2018 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-29298292

RESUMEN

Organogenesis, tissue homeostasis and organ function involve complex spatial cellular organization and tissue dynamics. The underlying mechanisms of these processes, and how they are disrupted in disease, are challenging to address in vivo and ethically impossible to study in human. Organoids, three-dimensional (3D) stem cell cultures that self-organize into ex vivo 'mini-organs', now open a new window onto cellular processes within tissue. Light microscopy is a powerful approach to probe the cellular complexity that can be modeled with organoids. This combination of tools is already leading to exciting synergies in stem cell and cancer research.


Asunto(s)
Modelos Biológicos , Imagen Óptica/métodos , Organogénesis , Organoides/citología , Células Madre Pluripotentes/citología , Animales , Humanos
7.
Development ; 144(6): 1065-1071, 2017 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-27993977

RESUMEN

Advances in stem cell research have enabled the generation of 'mini organs' or organoids that recapitulate phenotypic traits of the original biological specimen. Although organoids have been demonstrated for multiple organ systems, there are more limited options for studying mouse mammary gland formation in vitro Here, we have built upon previously described culture assays to define culture conditions that enable the efficient generation of clonal organoid structures from single sorted basal mammary epithelial cells (MECs). Analysis of Confetti-reporter mice revealed the formation of uni-colored structures and thus the clonal nature of these organoids. High-resolution 3D imaging demonstrated that basal cell-derived complex organoids comprised an inner compartment of polarized luminal cells with milk-producing capacity and an outer network of elongated myoepithelial cells. Conversely, structures generated from luminal MECs rarely contained basal/myoepithelial cells. Moreover, flow cytometry and 3D microscopy of organoids generated from lineage-specific reporter mice established the bipotent capacity of basal cells and the restricted potential of luminal cells. In summary, we describe optimized in vitro conditions for the efficient generation of mouse mammary organoids that recapitulate features of mammary tissue architecture and function, and can be applied to understand tissue dynamics and cell-fate decisions.


Asunto(s)
Glándulas Mamarias Animales/crecimiento & desarrollo , Organoides/citología , Técnicas de Cultivo de Tejidos/métodos , Animales , Linaje de la Célula , Células Clonales , Células Epiteliales/citología , Femenino , Citometría de Flujo , Genes Reporteros , Imagenología Tridimensional , Glándulas Mamarias Animales/citología , Ratones , Microscopía Confocal
8.
Adv Funct Mater ; 30(44): 1910250, 2020 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-34566552

RESUMEN

To date, pharmaceutical progresses in central nervous system (CNS) diseases are clearly hampered by the lack of suitable disease models. Indeed, animal models do not faithfully represent human neurodegenerative processes and human in vitro 2D cell culture systems cannot recapitulate the in vivo complexity of neural systems. The search for valuable models of neurodegenerative diseases has recently been revived by the addition of 3D culture that allows to re-create the in vivo microenvironment including the interactions among different neural cell types and the surrounding extracellular matrix (ECM) components. In this review, the new challenges in the field of CNS diseases in vitro 3D modeling are discussed, focusing on the implementation of bioprinting approaches enabling positional control on the generation of the 3D microenvironments. The focus is specifically on the choice of the optimal materials to simulate the ECM brain compartment and the biofabrication technologies needed to shape the cellular components within a microenvironment that significantly represents brain biochemical and biophysical parameters.

9.
Nature ; 506(7488): 322-7, 2014 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-24463516

RESUMEN

The mammary epithelium undergoes profound morphogenetic changes during development. Architecturally, it comprises two primary lineages, the inner luminal and outer myoepithelial cell layers. Two opposing concepts on the nature of mammary stem cells (MaSCs) in the postnatal gland have emerged. One model, based on classical transplantation assays, postulates that bipotent MaSCs have a key role in coordinating ductal epithelial expansion and maintenance in the adult gland, whereas the second model proposes that only unipotent MaSCs identified by lineage tracing contribute to these processes. Through clonal cell-fate mapping studies using a stochastic multicolour cre reporter combined with a new three-dimensional imaging strategy, we provide evidence for the existence of bipotent MaSCs as well as distinct long-lived progenitor cells. The cellular dynamics at different developmental stages support a model in which both stem and progenitor cells drive morphogenesis during puberty, whereas bipotent MaSCs coordinate ductal homeostasis and remodelling of the mouse adult gland.


Asunto(s)
Glándulas Mamarias Animales/citología , Glándulas Mamarias Humanas/citología , Células Madre Multipotentes/citología , Animales , Linaje de la Célula , Rastreo Celular , Células Clonales/citología , Células Clonales/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Femenino , Humanos , Queratina-14/metabolismo , Ratones , Morfogénesis , Células Madre Multipotentes/metabolismo , Pubertad , Receptores Acoplados a Proteínas G/metabolismo , Maduración Sexual , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
10.
Nature ; 473(7348): 532-5, 2011 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-21572437

RESUMEN

How dynamic signalling and extensive tissue rearrangements interact to generate complex patterns and shapes during embryogenesis is poorly understood. Here we characterize the signalling events taking place during early morphogenesis of chick skeletal muscles. We show that muscle progenitors present in somites require the transient activation of NOTCH signalling to undergo terminal differentiation. The NOTCH ligand Delta1 is expressed in a mosaic pattern in neural crest cells that migrate past the somites. Gain and loss of Delta1 function in neural crest modifies NOTCH signalling in somites, which results in delayed or premature myogenesis. Our results indicate that the neural crest regulates early muscle formation by a unique mechanism that relies on the migration of Delta1-expressing neural crest cells to trigger the transient activation of NOTCH signalling in selected muscle progenitors. This dynamic signalling guarantees a balanced and progressive differentiation of the muscle progenitor pool.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/embriología , Músculo Esquelético/metabolismo , Cresta Neural/metabolismo , Receptores Notch/metabolismo , Animales , Linaje de la Célula , Embrión de Pollo , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Músculo Esquelético/citología , Cresta Neural/citología , Transducción de Señal , Somitos/citología , Somitos/embriología , Somitos/metabolismo , Factores de Tiempo
11.
Breast Cancer Res ; 18(1): 116, 2016 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-27887631

RESUMEN

Lineage tracing is increasingly being utilised to probe different cell types that exist within the mammary gland. Whilst this technique is powerful for tracking cells in vivo and dissecting the roles of different cellular subsets in development, homeostasis and oncogenesis, there are important caveats associated with lineage tracing strategies. Here we highlight key parameters of particular relevance for the mammary gland. These include tissue preparation for whole-mount imaging, whereby the inclusion of enzymatic digestion can drastically alter tissue architecture and cell morphology, and therefore should be avoided. Other factors include the scoring of clones in three dimensions versus two dimensions, the timing of induction, and the marked variability in labelling efficiency that is evident not only between different mouse models harbouring a similar gene promoter but also within a given strain and even within a single mammary gland. Thus, it becomes crucial to visualise extensive areas of ductal tissue and to consider the intricacies of the methodology for lineage tracing studies on normal mammary development and on potential 'cells of origin' of cancer.


Asunto(s)
Linaje de la Célula , Glándulas Mamarias Animales/diagnóstico por imagen , Glándulas Mamarias Humanas/diagnóstico por imagen , Imagen Molecular , Animales , Biomarcadores , Linaje de la Célula/genética , Rastreo Celular/métodos , Evolución Clonal , Femenino , Humanos , Imagenología Tridimensional/métodos , Imagen Molecular/métodos
12.
Nat Protoc ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38504137

RESUMEN

Modeling immuno-oncology by using patient-derived material and immune cell co-cultures can advance our understanding of immune cell tumor targeting in a patient-specific manner, offering leads to improve cellular immunotherapy. However, fully exploiting these living cultures requires analysis of the dynamic cellular features modeled, for which protocols are currently limited. Here, we describe the application of BEHAV3D, a platform that implements multi-color live 3D imaging and computational tools for: (i) analyzing tumor death dynamics at both single-organoid or cell and population levels, (ii) classifying T cell behavior and (iii) producing data-informed 3D images and videos for visual inspection and further insight into obtained results. Together, this enables a refined assessment of how solid and liquid tumors respond to cellular immunotherapy, critically capturing both inter- and intratumoral heterogeneity in treatment response. In addition, BEHAV3D uncovers T cell behavior involved in tumor targeting, offering insight into their mode of action. Our pipeline thereby has strong implications for comparing, prioritizing and improving immunotherapy products by highlighting the behavioral differences between individual tumor donors, distinct T cell therapy concepts or subpopulations. The protocol describes critical wet lab steps, including co-culture preparations and fast 3D imaging with live cell dyes, a segmentation-based image processing tool to track individual organoids, tumor and immune cells and an analytical pipeline for behavioral profiling. This 1-week protocol, accessible to users with basic cell culture, imaging and programming expertise, can easily be adapted to any type of co-culture to visualize and exploit cell behavior, having far-reaching implications for the immuno-oncology field and beyond.

13.
EMBO Mol Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831131

RESUMEN

Achieving complete tumor resection is challenging and can be improved by real-time fluorescence-guided surgery with molecular-targeted probes. However, pre-clinical identification and validation of probes presents a lengthy process that is traditionally performed in animal models and further hampered by inter- and intra-tumoral heterogeneity in target expression. To screen multiple probes at patient scale, we developed a multispectral real-time 3D imaging platform that implements organoid technology to effectively model patient tumor heterogeneity and, importantly, healthy human tissue binding.

14.
Cancer Discov ; 14(4): 663-668, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38571421

RESUMEN

SUMMARY: We are building the world's first Virtual Child-a computer model of normal and cancerous human development at the level of each individual cell. The Virtual Child will "develop cancer" that we will subject to unlimited virtual clinical trials that pinpoint, predict, and prioritize potential new treatments, bringing forward the day when no child dies of cancer, giving each one the opportunity to lead a full and healthy life.


Asunto(s)
Neoplasias , Humanos , Neoplasias/genética
15.
Artículo en Inglés | MEDLINE | ID: mdl-36167726

RESUMEN

Breast cancer is a pathological condition characterized by high morphological and molecular heterogeneity. Not only the breast cancer cells, but also their tumor micro-environment consists of a multitude of cell types and states, which continuously evolve throughout progression of the disease. To understand breast cancer evolution within this complex environment, in situ analysis of breast cancer and their co-evolving cells and structures in space and time are essential. In this review, recent technical advances in three-dimensional (3D) and intravital imaging of breast cancer are discussed. Moreover, we highlight the resulting new knowledge on breast cancer biology obtained through these innovative imaging technologies. Finally, we discuss how multidimensional imaging technologies can be integrated with molecular profiling to understand the full complexity of breast cancer and the tumor micro-environment during tumor progression and treatment response.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Diagnóstico por Imagen , Microambiente Tumoral
16.
Nat Rev Cancer ; 23(11): 731-745, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37704740

RESUMEN

By providing spatial, molecular and morphological data over time, live-cell imaging can provide a deeper understanding of the cellular and signalling events that determine cancer response to treatment. Understanding this dynamic response has the potential to enhance clinical outcome by identifying biomarkers or actionable targets to improve therapeutic efficacy. Here, we review recent applications of live-cell imaging for uncovering both tumour heterogeneity in treatment response and the mode of action of cancer-targeting drugs. Given the increasing uses of T cell therapies, we discuss the unique opportunity of time-lapse imaging for capturing the interactivity and motility of immunotherapies. Although traditionally limited in the number of molecular features captured, novel developments in multidimensional imaging and multi-omics data integration offer strategies to connect single-cell dynamics to molecular phenotypes. We review the effect of these recent technological advances on our understanding of the cellular dynamics of tumour targeting and discuss their implication for next-generation precision medicine.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Antineoplásicos/uso terapéutico , Medicina de Precisión/métodos , Inmunoterapia
17.
Cancers (Basel) ; 15(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37568714

RESUMEN

Fluorescence-guided surgery (FGS), based on fluorescent tracers binding to tumor-specific biomarkers, could assist surgeons to achieve complete tumor resections. This study evaluated potential biomarkers for FGS in pediatric Ewing sarcoma (ES). Immunohistochemistry (IHC) was performed to assess CD99, CXCR4, CD117, NPY-R-Y1, and IGF-1R expression in ES biopsies and resection specimens. LINGO-1 and GD2 evaluation did not work on the acquired tissue. Based on the immunoreactive scores, anti-CD99 and anti-CD117 were evaluated for binding specificity using flow cytometry and immunofluorescence microscopy. Anti-GD2, a tracer in the developmental phase, was also tested. These three tracers were topically applied to a freshly resected ES tumor and adjacent healthy tissue. IHC demonstrated moderate/strong CD99 and CD117 expression in ES tumor samples, while adjacent healthy tissue had limited expression. Flow cytometry and immunofluorescence microscopy confirmed high CD99 expression, along with low/moderate CD117 and low GD2 expression, in ES cell lines. Topical anti-CD99 and anti-GD2 application on ES tumor showed fluorescence, while anti-CD117 did not show fluorescence for this patient. In conclusion, CD99-targeting tracers hold promise for FGS of ES. CD117 and GD2 tracers could be potential alternatives. The next step towards development of ES-specific FGS tracers could be ex vivo topical application experiments on a large cohort of ES patients.

18.
Nat Commun ; 14(1): 3074, 2023 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-37244912

RESUMEN

Paediatric rhabdomyosarcoma (RMS) is a soft tissue malignancy of mesenchymal origin that is thought to arise as a consequence of derailed myogenic differentiation. Despite intensive treatment regimens, the prognosis for high-risk patients remains dismal. The cellular differentiation states underlying RMS and how these relate to patient outcomes remain largely elusive. Here, we use single-cell mRNA sequencing to generate a transcriptomic atlas of RMS. Analysis of the RMS tumour niche reveals evidence of an immunosuppressive microenvironment. We also identify a putative interaction between NECTIN3 and TIGIT, specific to the more aggressive fusion-positive (FP) RMS subtype, as a potential cause of tumour-induced T-cell dysfunction. In malignant RMS cells, we define transcriptional programs reflective of normal myogenic differentiation and show that these cellular differentiation states are predictive of patient outcomes in both FP RMS and the less aggressive fusion-negative subtype. Our study reveals the potential of therapies targeting the immune microenvironment of RMS and suggests that assessing tumour differentiation states may enable a more refined risk stratification.


Asunto(s)
Rabdomiosarcoma Embrionario , Rabdomiosarcoma , Niño , Humanos , Transcriptoma , Proliferación Celular/genética , Rabdomiosarcoma/genética , Rabdomiosarcoma/patología , Perfilación de la Expresión Génica , Línea Celular Tumoral , Microambiente Tumoral/genética
19.
Mol Ther Nucleic Acids ; 33: 57-74, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37435135

RESUMEN

Genome engineering has become more accessible thanks to the CRISPR-Cas9 gene-editing system. However, using this technology in synthetic organs called "organoids" is still very inefficient. This is due to the delivery methods for the CRISPR-Cas9 machinery, which include electroporation of CRISPR-Cas9 DNA, mRNA, or ribonucleoproteins containing the Cas9-gRNA complex. However, these procedures are quite toxic for the organoids. Here, we describe the use of the "nanoblade (NB)" technology, which outperformed by far gene-editing levels achieved to date for murine- and human tissue-derived organoids. We reached up to 75% of reporter gene knockout in organoids after treatment with NBs. Indeed, high-level NB-mediated knockout for the androgen receptor encoding gene and the cystic fibrosis transmembrane conductance regulator gene was achieved with single gRNA or dual gRNA containing NBs in murine prostate and colon organoids. Likewise, NBs achieved 20%-50% gene editing in human organoids. Most importantly, in contrast to other gene-editing methods, this was obtained without toxicity for the organoids. Only 4 weeks are required to obtain stable gene knockout in organoids and NBs simplify and allow rapid genome editing in organoids with little to no side effects including unwanted insertion/deletions in off-target sites thanks to transient Cas9/RNP expression.

20.
Cancer Cell ; 41(6): 1170-1185.e12, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37311414

RESUMEN

Although treatment with taxanes does not always lead to clinical benefit, all patients are at risk of their detrimental side effects such as peripheral neuropathy. Understanding the in vivo mode of action of taxanes can help design improved treatment regimens. Here, we demonstrate that in vivo, taxanes directly trigger T cells to selectively kill cancer cells in a non-canonical, T cell receptor-independent manner. Mechanistically, taxanes induce T cells to release cytotoxic extracellular vesicles, which lead to apoptosis specifically in tumor cells while leaving healthy epithelial cells intact. We exploit these findings to develop an effective therapeutic approach, based on transfer of T cells pre-treated with taxanes ex vivo, thereby avoiding toxicity of systemic treatment. Our study reveals a different in vivo mode of action of one of the most commonly used chemotherapies, and opens avenues to harness T cell-dependent anti-tumor effects of taxanes while avoiding systemic toxicity.


Asunto(s)
Vesículas Extracelulares , Neoplasias , Humanos , Linfocitos T , Taxoides/farmacología , Apoptosis , Células Epiteliales , Neoplasias/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA