Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Langmuir ; 37(24): 7442-7448, 2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34110835

RESUMEN

Water/oil/water (w/o/w) double emulsions (DEs) are multicompartment structures which can be used in many technological applications and in fundamental studies as models of cell like microreactors or templates for other materials. Herein, we study the flow dynamics of water/oil/water double emulsions generated in a microfluidic device and stabilized with the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC). We show that by varying the concentration of lipids in the oil phase (chloroform) or by modulating the viscosity of the aqueous continuous phase, the double emulsions under flow exhibit a rich dynamic behavior. An initial deformation of the double emulsions is followed by tube extraction at the rear end, relative to the flow direction, resulting in pinch off at the tube extremity by which small aqueous compartments are released. These compartments are phospholipid vesicles as deduced from fluorescence experiments. The overall process can thus be of help to shed light on the mechanical aspects of phenomena such as the budding and fusion in cell membranes.


Asunto(s)
Microfluídica , Fosfolípidos , Emulsiones , Viscosidad , Agua
2.
Phys Chem Chem Phys ; 23(32): 17606-17615, 2021 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-34369507

RESUMEN

We study the impact of delayed feedbacks in the collective synchronization of ensembles of identical and autonomous micro-oscillators. To this aim, we consider linear arrays of Belousov-Zhabotinsky (BZ) oscillators confined in micro-compartmentalised systems, where the delayed feedback mimics natural lags that can arise due to the confinement properties and mechanisms driving the inter-oscillator communication. The micro-oscillator array is modeled as a set of Oregonator-like kinetics coupled via mass exchange of the chemical messengers. Changes in the synchronization patterns are explored by varying the delayed feedback introduced in the messenger species Br2. A direct transition from anti-phase to in-phase synchronization and back to the initial anti-phase scheme is observed by progressively increasing the time delay from zero to the value T0, which is the oscillation period characterising the system without any delayed coupling. The route from anti- to in-phase oscillations (and back) consists of regimes where windows of in-phase oscillations are periodically broken by anti-phase beats. Similarities between these phase transition dynamics and synchronization scenarios characterising the coordination of oscillatory limb movements are finally discussed.

3.
Mol Pharm ; 15(3): 1258-1265, 2018 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-29433321

RESUMEN

Hybrid self-assembling nanoparticles (hsaNPs) encapsulating bisphosphonates (BPs) recently showed very promising results in preclinic experiments for the treatment of brain tumor. However, the poor knowledge on the architecture of hybrid nanovectors is certainly one of the main reasons hampering further clinical and industrial development of these technologies. Here we propose to combine different techniques, that is, small angle neutron scattering (SANS) and X-ray Sscattering (SAXS), with cryo-electron transmission microscopy (cryo-TEM) to study the architecture of the final hsaNPs as well as of the four components before the assembling process. Data analysis based on SANS and SAXS experiments suggested a multiple compartment architecture of the final product, consisting of two bilayers sourrounding a core. Structures consisting of two shells surrounding an internal core were also observed in the cryo-TEM analysis. Such high resolution insight, also combined with size distribution and zeta potential of the NPs, provides exhaustive characterization of hsaNPs encapsulating BPs, and it is aimed at supporting further their clinical and industrial development.


Asunto(s)
Antineoplásicos/administración & dosificación , Composición de Medicamentos/métodos , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Ácido Zoledrónico/administración & dosificación , Microscopía por Crioelectrón , Ácidos Grasos Monoinsaturados/química , Humanos , Liposomas , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/ultraestructura , Difracción de Neutrones/instrumentación , Difracción de Neutrones/métodos , Fosfatidiletanolaminas/química , Polietilenglicoles/química , Compuestos de Amonio Cuaternario/química , Dispersión del Ángulo Pequeño , Transferrina/química , Difracción de Rayos X/instrumentación , Difracción de Rayos X/métodos
4.
Langmuir ; 33(36): 9100-9105, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28816051

RESUMEN

Water-in-oil (w/o) simple emulsions are dispersed microconfined systems that find applications in many areas of advanced materials and biotechnology, such as the food industry, drug delivery, and cosmetics, to name but a few. In these systems, the structural and chemical properties of the boundary layer at the w/o interface are of paramount importance in determining functionality and stability. Recently, microfluidic methods have emerged as a valuable tool for fabricating monodisperse emulsion droplets. Because of the intrinsic flexibility of microfluidics, different interfaces can be obtained, and general principles governing their stability are needed to guide the experimental approach. Herein, we investigate the structural characteristics of the region encompassing the liquid/liquid (L/L) interface of w/o emulsions generated by a microfluidic device in the presence of phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and other intercalating amphiphiles (dopants) using microfocused small-angle X-rays scattering (µ-SAXS). We show that phospholipids provide a stable and versatile boundary film of ∼100 µm whose basic units are swollen and uncorrelated DMPC bilayers. The internal arrangement of this interfacial film can be tuned by adding molecules with a different packing parameter, such as cholesterol, which is able to increase the stiffness of the lipid membranes and trigger interbilayer correlation.

5.
Phys Chem Chem Phys ; 19(4): 3046-3055, 2017 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-28079203

RESUMEN

Gene therapy is based on nucleic acid delivery to pathogenic cells in order to modulate their gene expression. The most used non viral vectors are lipid-based nanoaggregates, which are safer than viral carriers and have been shown to assemble easily with both DNA and RNA. However, the transfection efficiency of non viral carriers still needs to be improved before intensive practise in clinical trials can be implemented. For this purpose, the in depth characterization of the complexes formed by nucleic acids and their transporters is of great relevance. In particular, information on the structure and assembly mechanism can be useful to improve our general knowledge of these artificial transfection agents. In this paper, the complexation mechanism of short interfering RNA and DNA molecules (siRNA and siDNA, respectively) with cationic micelles is investigated by combining small angle X-ray scattering experiments and molecular dynamics simulations. Micelles were obtained by Gemini surfactants with different spacer lengths (12-3-12, 12-6-12). The siRNA and siDNA used were double strand molecules characterized by the same length and homologous sequence, in order to perform a close comparison. We showed that complexes appear in solution immediately after mixing and, therefore, the investigation of complex formation requires fast experimental techniques, such as time resolved synchrotron SAXS (Tr-SAXS). The obtained systems had internal arrangement constituted by layers of squeezed micelles alternating the nucleic acids. Both SAXS and MD analyses allowed us to evaluate the mean size of complexes in the range of a few nanometers, with looser and less ordered stacking for the DNA containing aggregates.


Asunto(s)
ADN/química , Micelas , Modelos Químicos , Oligonucleótidos/química , ARN Bicatenario/química , Oligonucleótidos/metabolismo , Sincrotrones , Tiempo
6.
Rep Pract Oncol Radiother ; 21(2): 123-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26933395

RESUMEN

AIM: Boron Neutron Capture Therapy (BNCT) is a binary hadrontherapy which exploits the neutron capture reaction in boron, together with a selective uptake of boronated substances by the neoplastic tissue. There is increasing evidence that future improvements in clinical BNCT will be triggered by the discovery of new boronated compounds, with higher selectivity for the tumor with respect to clinically used sodium borocaptate (BSH) and boronophenylalanine (BPA). BACKGROUND: Therefore, a (10)B quantification technique for biological samples is needed in order to evaluate the performance of new boronated formulations. MATERIALS AND METHODS: This article describes an improved neutron autoradiography set-up employing radiation sensitive films where the latent tracks are made visible by proper etching conditions. RESULTS: Calibration curves for both liquid and tissue samples were obtained. CONCLUSIONS: The obtained calibration curves were adopted to set-up a mechanism to point out boron concentration in the whole sample.

7.
Anal Chem ; 87(19): 9621-30, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26344794

RESUMEN

Oscillating chemical reactions, encapsulated within artificial vesicles have been demonstrated as a powerful analogy of living cells for the investigation of chemical communication and morphogenesis. However, little is understood with regards to the influence of confinement on the reactivity of such systems. Herein, the effect of confinement on the Belousov-Zhabotinsky (BZ) oscillating reaction in bulk solution, (employing ferroin as a catalyst and malonic acid as the organic substrate) is investigated using scanning electrochemical microscopy (SECM) toward different insulating surfaces such as glass, silanized glass, or PTFE. An unexpected increase in the amplitude of the BZ reaction at a tip-substrate distance of ∼12-15 µm is observed. By simulating different reaction mechanisms, from simple EC' catalysis to more sophisticated Oregonator or even an 11-reaction scheme, it is shown that such behavior reveals the intervention of redox catalysis processes and particularly the short-lived highly reactive radical intermediate BrO2(•) indirectly detected at micromolar concentrations. The reinspection of the EC' mechanism shows that the homogeneous catalysis route is confirmed and kinetically characterized from SECM toward an insulating substrate, with promising potentiality in many systems. More specifically to the complex chemical case of BZ reactions, the mechanism is understood from the envelope curves of the oscillations, which are assessed in the absence of the oscillation (absence of organic substrate).

8.
Soft Matter ; 10(13): 2226-33, 2014 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-24651873

RESUMEN

The complexation of siRNA (small interfering RNA) with cationic micelles was studied using time dependent synchrotron SAXS. Micelles were formed by two types of divalent cationic surfactants, i.e. Gemini bis(quaternary ammonium) bromide with variable spacer length (12-3-12, 12-6-12, 12-12-12) and a weak electrolyte surfactant (SH14) with triazine head. Immediately after mixing (t < 50 ms), new large aggregates appeared in solution and the scattering intensity at low q increased. Concomitantly, the presence of a quasi-Bragg peak at q ∼ 1.5 nm(-1) indicated core structuring within the complexes. We hypothesize that siRNA and micelles are alternately arranged into "sandwiches", forming domains with internal structural coherence. The process of complex reorganization followed a first-order kinetics and was completed in less than about 5 minutes, after which a steady state was reached. Aggregates containing Geminis were compact globular structures whose gyration radii Rg depended on the spacer length and were in the order of 7-27 nm. Complexes containing SH14 (Rg = 14-16 nm) were less ordered and possessed a looser internal arrangement. The obtained data, joint with previous structural investigation using Dynamic Light Scattering, Zeta Potential and Small Angle Neutron Scattering, are encouraging evidence for using these systems in biological trials. In fact we showed that transfection agents can be obtained by simply mixing a micelle solution of the cationic surfactant and a siRNA solution, both of which are easily prepared and stable.


Asunto(s)
Micelas , ARN Interferente Pequeño/química , Tensoactivos/química , Cationes/química , Cinética , Simulación de Dinámica Molecular , Tamaño de la Partícula , ARN Interferente Pequeño/metabolismo , Dispersión del Ángulo Pequeño , Difracción de Rayos X
9.
Chemosphere ; 355: 141765, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38531497

RESUMEN

Due to the increasing evidence of widespread sub-micron pollutants in the atmosphere, the impact of airborne nanoparticles is a subject of great relevance. In particular, the smallest particles are considered the most active and dangerous, having a higher surface/volume ratio. Here we tested the effect of iron oxide (Fe3O4) nanoparticles (IONPs) with different mean diameter and size distribution on the model plant Tillandsia usneoides. Strands were placed in home-built closed boxes and exposed to levels of airborne IONPs reported for the roadside air, i.e. in the order of 107 - 108 items m-2. Plant growth and other morpho-physiological parameters were monitored for two weeks, showing that exposure to IONPs significantly reduced the length increment of the treated strands with respect to controls. A dose-dependence of this impairing effect was found only for particles with mean size of a few tens of nanometers. These were also proved to be the most toxic at the highest concentration tested. The IONP-induced hamper in growth was correlated with altered concentration of macro- and micronutrients in the plant, while no significant variation in photosynthetic activity was detected in treated samples. Microscopy investigation showed that IONPs could adhere to the plant surface and were preferentially located on the trichome wings. Our results report, for the first time, evidence of the negative effects of airborne IONP pollution on plant health, thus raising concerns about related environmental risks. Future research should be devoted to other plant species and pollutants to assess the impact of airborne pollution on plants and devise suitable attenuation practices.


Asunto(s)
Contaminantes Atmosféricos , Tillandsia , Animales , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Contaminación Ambiental , Nanopartículas Magnéticas de Óxido de Hierro
10.
Plant Physiol Biochem ; 207: 108403, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38290343

RESUMEN

The effects of polyethylene terephthalate micro-nanoplastics (PET-MNPs) were tested on the model freshwater species Spirodela polyrhiza (L.) Schleid., with focus on possible particle-induced epigenetic effects (i.e. alteration of DNA methylation status). MNPs (size âˆ¼ 200-300 nm) were produced as water dispersions from PET bottles through repeated cycles of homogenization and used to prepare N-medium at two environmentally relevant concentrations (∼0.05 g L-1 and ∼0.1 g L-1 of MNPs). After 10 days of exposure, a reduction in fresh and dry weight was observed in treated plants, even if the average specific growth rate for both frond number and area was not altered. Impaired growth was coupled with a MNP-induced decrease of chlorophyll fluorescence parameters (i.e. ΨETo and Piabs, indicators of photochemical efficiency) and starch concentration, as well as with alterations in plant ionomic profile and oxidative status. The methylation-sensitive amplification polymorphism (MSAP) technique was used to assess possible changes in DNA methylation levels induced by plastic particles. The analysis showed unusual hypermethylation in 5'-CCGG sites that could be implicated in DNA protection from dangerous agents (i.e. reactive oxygen species) or in the formation of new epialleles. This work represents the first evidence of MNP-induced epigenetic modifications in the plant world.


Asunto(s)
Metilación de ADN , Microplásticos , Metilación de ADN/genética , Especies Reactivas de Oxígeno/metabolismo , Epigénesis Genética , Polimorfismo Genético
11.
Environ Sci Pollut Res Int ; 30(13): 39131-39141, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36595170

RESUMEN

Sustainability and circular economy are increasingly pushing for the search of natural materials to foster antiparasitic treatments, especially in the case of economically relevant agricultural cultivations, such as grapevine. In this work, we propose to deliver neem oil, a natural biopesticide loaded into novel nanovectors (nanocapsules) which were fabricated using a scalable procedure starting from Kraft lignin and grapeseed tannins. The obtained formulations were characterized in terms of size and Zeta potential, showing that almost all the nanocapsules had size in the suitable range for delivery purposes (mean diameter 150-300 nm), with low polydispersity and sufficient stability to ensure long shelf life. The target microorganisms were three reference fungal pathogens of grapevine (Botrytis cinerea, Phaeoacremonium minimum, Phaeomoniella chlamydospora), responsible for recurrent diseases on this crop: grey mold or berry rot by B. cinerea and diseases of grapevine wood within the Esca complex of diseases. Results showed that grapeseed tannins did not promote inhibitory effects, either alone or in combination with Kraft lignin. On the contrary, the efficacy of neem oil against P. minimum was boosted by more than 1-2 orders of magnitude and the parasite growth inhibition was higher with respect to a widely used commercial pesticide, while no additional activity was detected against P. chlamydospora and B. cinerea.


Asunto(s)
Fungicidas Industriales , Nanocápsulas , Fungicidas Industriales/farmacología , Taninos , Lignina , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología
12.
Methods Mol Biol ; 2566: 345-353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36152265

RESUMEN

The microscopic visualization of nanoparticles in plants is crucial to elucidate the mechanisms of their uptake through the cell wall and plasma membrane and to localize the possible sites of their extracellular or intracellular accumulation. Lignin nanocarriers are polymeric hollow nanocapsules able to contain and transport several bioactive substances inside plant tissues. We describe here a method for the preparation of Fluorol Yellow 088-labeled lignin nanocapsules that allow their localization in plant organs and tissues by fluorescence microscopy.


Asunto(s)
Nanocápsulas , Lignina/metabolismo , Microscopía Fluorescente , Xantenos
13.
Environ Sci Pollut Res Int ; 30(35): 83760-83770, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37347326

RESUMEN

The increasing demand for food has required intensive use of pesticides which are hazardous to the ecosystem. A valid alternative is represented by biopesticides; however, these molecules are often insoluble in water, and poorly bioavailable. Nanopesticides can be engineered to reach a selected target with controlled release of the active principle. In this work, capsaicin, an irritant alkaloid from hot chili peppers, and hydroxytyrosol, a phenolic compound obtained from extra-virgin olive oil by-products, were loaded into innovative nanocarriers. These were designed ad hoc combining exopolysaccharides from the cyanobacteria Neocyanospira capsulata, and a lipid component, i.e., egg phosphatidylcholine. The polysaccharide was chosen for chemical affinity with the chitin of insect exoskeleton, while the lipids were introduced to modulate the carrier rigidity. The newly formed nanosystems were characterized by physico-chemical techniques and tested for their possible use in pest control programs. The Mediterranean Fruit Fly Ceratitis capitata Wiedemann, 1824 (Diptera, Tephriditae), a pest of the Mediterranean Region causing high economic losses, was used as a model insect. We found that the nanoformulations nanocarriers prepared in this work, were able to increase the ovicidal effect of hydroxytyrosol. Moreover, the formulation encapsulating either hydroxytyrosol or capsaicin were able to reduce the number of females landing on treated apricots.


Asunto(s)
Ceratitis capitata , Animales , Femenino , Capsaicina/farmacología , Ecosistema , Control de Insectos/métodos
14.
Pharmaceutics ; 14(9)2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-36145594

RESUMEN

Biocompatible nanocarriers can be obtained by lipid extraction from natural sources such as algal biomasses, which accumulate different lipid classes depending on the employed culture media. Lipid aggregates can be distinguished according to supramolecular architecture into lamellar and nonlamellar structures. This distinction is mainly influenced by the lipid class and molecular packing parameter, which determine the possible values of interfacial curvature and thus the supramolecular symmetries that can be obtained. The nanosystems prepared from bio-sources are able to self-assemble into different compartmentalized structures due to their complex composition. They also present the advantage of increased carrier-target biocompatibility and are suitable to encapsulate and vehiculate poorly water-soluble compounds, e.g., natural antioxidants. Their functional properties stem from the interplay of several parameters. Following previous work, here the functionality of two series of structurally distinct lipid nanocarriers, namely liposomes and cubosomes deriving from algal biomasses with different lipid composition, is characterized. In the view of their possible use as pharmaceutical or nutraceutical formulations, both types of nanovectors were loaded with three well-known antioxidants, i.e., curcumin, α-tocopherol and piperine, and their carrier efficacy was compared considering their different structures. Firstly, carrier stability in biorelevant conditions was assessed by simulating a gastrointestinal tract model. Then, by using an integrated chemical and pharmacological approach, the functionality in terms of encapsulation efficiency, cargo bioaccessibility and kinetics of antioxidant capacity by UV-Visible spectroscopy was evaluated. Subsequently, in vitro cytotoxicity and viability tests after administration to model cell lines were performed. As a consequence of this investigation, it is possible to conclude that nanovectors from algal lipids, i.e., cubosomes and liposomes, can be efficient delivery agents for lipophilic antioxidants, being able to preserve and enhance their activity toward different targets while promoting sustained release.

15.
J Hazard Mater ; 437: 129314, 2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-35728311

RESUMEN

Due to the increasing evidence of widespread plastic pollution in the air, the impact on plants of airborne particles of polycarbonate (PC), polyethyleneterephthalate (PET), polyethylene (PE), and polyvinylchloride (PVC) was tested by administering pristine and aged airborne micro-nanoplastics (MNPs) to Tillandsia usneoides for two weeks. Here we showed that exposure to pristine MNPs, significantly reduced plant growth with respect to controls. Particularly, PVC almost halved plant development at the end of the treatment, while the other plastics exerted negative effects on growth only at the beginning of the exposure, with final stages comparable to those of controls. Plants exposed to aged MNPs showed significantly decreased growth at early stages with PC, later in the growth with PE, and even later with PET. Aged PVC did not exert a toxic effect on plants. When present, the plastic-mediated reduction in plant growth was coupled with a decrease in photosynthetic activity and alterations in the plant concentration of macro- and micronutrients. The plastic particles were showed to adhere to the plant surface and, preferentially, on the trichome wings. Our results reported, for the first time, evidence of negative effects of airborne plastic pollution on plant health, thus raising concerns for related environmental risks.


Asunto(s)
Bromeliaceae , Tillandsia , Animales , Monitoreo del Ambiente/métodos , Microplásticos , Plásticos/toxicidad , Cloruro de Polivinilo/toxicidad
16.
J Phys Chem A ; 115(15): 3227-32, 2011 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-21434647

RESUMEN

The propagation of traveling chemical waves in the excitable Belousov-Zhabotinsky (BZ) system when performed in the presence of 1,2-dipalmitoyl-sn-glycero-3-phosphatidyl choline (DPPC) bilayers responds sensitively to the phospholipid content. The characteristic features of wave propagation, such as spiral pitch, rotation period, and size of the spiral core region, show two regions of different behavior, one below and the other above a DPPC content of 12.5% (w/w) thus suggesting a transition in the organization of the lipid domains at a DPPC content of ∼12.5% (w/w). This transition is supported by small-angle X-ray scattering data, which show pronounced changes in the coherence lengths of the lyotropic smectic domains. Thus, the dynamics of the chemical system occurring at a macroscopic length scale reflects the organization of the water/lipid domains which extend over mesoscopic lengths. These findings indicate that in the BZ/DPPC system, there is an interaction between processes that occurs at length scales differing by as much as 3 orders of magnitude.


Asunto(s)
1,2-Dipalmitoilfosfatidilcolina/química , Membrana Dobles de Lípidos/química , Termodinámica , Tamaño de la Partícula , Fosfolípidos/química , Viscosidad , Agua/química
17.
Eur J Pharm Biopharm ; 158: 410-416, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33271303

RESUMEN

Lipid mesophases are lyotropic liquid crystalline systems which differ from liposomes and other globular aggregates in dilute regimes due to their inner ordering. It is known that natural lipids enable to obtain a rich variety of nanosystems and many of them have been proposed as delivery agents for bioactive compounds. Due to their packing parameters, several classes of lipids found in natural sources are able to self-assemble into nonlamellar structures. Among lipids occurring in plants and algae, triglycerides display this tendency. In the present study we examine new nanosystems built with lipids extracted from the marine microalga Nannochloropsis sp and their use as carriers for lipophilic antioxidants. The antioxidants studied, curcumin and tocopherol were encapsulated with high rate in the carriers. The physico-chemical characterization of plain and loaded vectors showed their structure and localization site, as well as the structure-functionality relationship related to potential drug delivery. The results show that the cargo molecules play an active role in driving the interactions which characterize the overall structure of the aggregates. The systems studied showed several coexisting mesophases, the most predominant structure being of cubic symmetry.


Asunto(s)
Antioxidantes/administración & dosificación , Portadores de Fármacos/química , Lípidos/química , Cristales Líquidos/química , Microalgas/química , Antioxidantes/farmacocinética , Curcumina/administración & dosificación , Curcumina/farmacocinética , Portadores de Fármacos/aislamiento & purificación , Composición de Medicamentos/métodos , Lípidos/aislamiento & purificación , Estructura Molecular , Tocoferoles/administración & dosificación , Tocoferoles/farmacocinética
18.
Mater Sci Eng C Mater Biol Appl ; 119: 111453, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33321590

RESUMEN

The aim of this work was the green synthesis of copper nanoparticles (Cu-NPs) using aqueous extracts of (i) bilberry (Vaccinium myrtillus L.) waste residues from the production of fruit juices and (ii) non-edible "false bilberry" fruits (Vaccinium uliginosum L. subsp. gaultherioides). Different cupric salts (CuCl2, Cu(CH3COO)2 and Cu(NO3)2) were used for the synthesis. The formation of stable nanoparticles (CuNPs) was assessed by transmission electron microscopy and the oxidation state of copper in these aggregates was followed by X-ray photoelectron spectroscopy. The polyphenol composition of the extracts was characterized, before and after the synthesis, using spectrophotometric methods (i.e. total soluble polyphenols and total monomeric anthocyanins) and high-performance liquid chromatography coupled with tandem mass spectrometry (i.e. individual anthocyanins). Polyphenol concentration in the extracts was found to decrease after the synthesis, indicating their active participation to the processes, which led to the formation of Cu-NPs. The antimicrobial activity of Cu-NPs, berry extracts, and cupric ion solutions were analysed by broth microdilution and time-kill assays, on prokaryotic and eukaryotic models. The antimicrobial activity of Cu-NPs, especially those derived from bilberry waste residues, appeared to be higher for both Gram-negative and Gram-positive bacteria, and for fungi, compared to the ones of its single components (cupric salts and berry extracts). Therefore, Cu-NPs from the green synthesis here proposed can be considered as a cost-effective sanitization tool with a wide spectrum of action.


Asunto(s)
Antiinfecciosos , Nanopartículas del Metal , Nanopartículas , Vaccinium , Antiinfecciosos/farmacología , Cobre , Análisis Costo-Beneficio , Extractos Vegetales/farmacología
19.
Biochim Biophys Acta ; 1788(3): 708-16, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19272336

RESUMEN

The conformation of bradykinin (BK), Arg1-Pro2-Pro3-Gly4-Phe5-Ser6-Pro7-Phe8-Arg9, was investigated by Nuclear Magnetic Resonance (NMR) spectroscopy and Monte Carlo simulation in two different media, i.e. in pure aqueous solution and in the presence of phospholipid vesicles. Monolamellar liposomes are a good model for biological membranes and mimic the environment experienced by bradykinin when interacting with G-protein coupled receptors (GPCRs). The NMR spectra showed that lipid bilayers induced a secondary structure in the otherwise inherently flexible peptide. The results of ensemble calculations revealed conformational changes occurring rapidly on the NMR time scale and allowed for the identification of different families of conformations that were averaged to reproduce the NMR observables. These structural results supported the hypothesis of the central role played by the peptide C-terminal domain in biological environments, and provided an explanation for the different biological behaviours observed for bradykinin


Asunto(s)
Bradiquinina/química , Simulación por Computador , Liposomas/química , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Conformación Proteica
20.
Biochim Biophys Acta ; 1788(12): 2518-25, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19837046

RESUMEN

Therapeutic vaccination with tumor antigens is a new approach in cancer treatment, which aims at inducing immune response while avoiding the side effects generally associated to many conventional therapies. To improve the efficacy of vaccines, suitable carriers may be used. Herein the insertion of a thioether analogue of GM3 lactone (SNeuAC-C14) into liposomes is reported. SNeuAC-C14 is a potential vaccine for the targeting of saccharide-based tumor epitopes. Different liposome formulations were designed to act as carriers and to generate recognition by tumor epitopes. The structural study of pure and loaded liposomes was carried out by synchrotron Small Angle X-ray Scattering and was complemented by Dynamic Light Scattering and Zeta potential measurements. This provided detailed information on relevant properties of the investigated host-guest structures and showed that the active unit of SNeuAC-C14, i.e. its spiro tricyclic moiety, was located in the polar head region of the liposome bilayer, which is an important requirement for recognition phenomena. Moreover, it was found that most of the SNeuAC-C14/liposome complexes were positively charged. The obtained results allow these systems to be considered as candidates to promote immunoresponse in tumor cells.


Asunto(s)
Vacunas contra el Cáncer/química , Epítopos/química , Gangliósido G(M3)/análogos & derivados , Membrana Dobles de Lípidos , Vacunas contra el Cáncer/uso terapéutico , Epítopos/uso terapéutico , Gangliósido G(M3)/química , Gangliósido G(M3)/uso terapéutico , Liposomas/química , Liposomas/uso terapéutico , Neoplasias/terapia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA