Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
MAGMA ; 37(2): 257-272, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38366129

RESUMEN

OBJECTIVE: To compensate subject-specific field inhomogeneities and enhance fat pre-saturation with a fast online individual spectral-spatial (SPSP) single-channel pulse design. METHODS: The RF shape is calculated online using subject-specific field maps and a predefined excitation k-space trajectory. Calculation acceleration options are explored to increase clinical viability. Four optimization configurations are compared to a standard Gaussian spectral selective pre-saturation pulse and to a Dixon acquisition using phantom and volunteer (N = 5) data at 1.5 T with a turbo spin echo (TSE) sequence. Measurements and simulations are conducted across various body parts and image orientations. RESULTS: Phantom measurements demonstrate up to a 3.5-fold reduction in residual fat signal compared to Gaussian fat saturation. In vivo evaluations show improvements up to sixfold for dorsal subcutaneous fat in sagittal cervical spine acquisitions. The versatility of the tailored trajectory is confirmed through sagittal foot/ankle, coronal, and transversal cervical spine experiments. Additional measurements indicate that excitation field (B1) information can be disregarded at 1.5 T. Acceleration methods reduce computation time to a few seconds. DISCUSSION: An individual pulse design that primarily compensates for main field (B0) inhomogeneities in fat pre-saturation is successfully implemented within an online "push-button" workflow. Both fat saturation homogeneity and the level of suppression are improved.


Asunto(s)
Aumento de la Imagen , Imagen por Resonancia Magnética , Humanos , Imagen por Resonancia Magnética/métodos , Aumento de la Imagen/métodos , Imagenología Tridimensional/métodos , Fantasmas de Imagen , Frecuencia Cardíaca , Vértebras Cervicales/diagnóstico por imagen
2.
Magn Reson Med ; 88(1): 180-194, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35266204

RESUMEN

PURPOSE: This work proposes a novel RF pulse design for parallel transmit (pTx) systems to obtain uniform saturation of semisolid magnetization for magnetization transfer (MT) contrast in the presence of transmit field B1+ inhomogeneities. The semisolid magnetization is usually modeled as being purely longitudinal, with the applied B1+ field saturating but not rotating its magnetization; thus, standard pTx pulse design methods do not apply. THEORY AND METHODS: Pulse design for saturation homogeneity (PUSH) optimizes pTx RF pulses by considering uniformity of root-mean squared B1+ , B1rms , which relates to the rate of semisolid saturation. Here we considered designs consisting of a small number of spatially non-selective sub-pulses optimized over either a single 2D plane or 3D. Simulations and in vivo experiments on a 7T Terra system with an 8-TX Nova head coil in five subjects were carried out to study the homogenization of B1rms and of the MT contrast by acquiring MT ratio maps. RESULTS: Simulations and in vivo experiments showed up to six and two times more uniform B1rms compared to circular polarized (CP) mode for 2D and 3D optimizations, respectively. This translated into 4 and 1.25 times more uniform MT contrast, consistently for all subjects, where two sub-pulses were enough for the implementation and coil used. CONCLUSION: The proposed PUSH method obtains more uniform and higher MT contrast than CP mode within the same specific absorption rate (SAR) budget.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Algoritmos , Humanos , Imagen por Resonancia Magnética/métodos , Fantasmas de Imagen , Ondas de Radio
3.
Magn Reson Med ; 85(6): 3140-3153, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33400302

RESUMEN

PURPOSE: To mitigate spatial flip angle (FA) variations under strict specific absorption rate (SAR) constraints for ultra-high field MRI using a combination of universal parallel transmit (pTx) pulses and fast subject-specific optimization. METHODS: Data sets consisting of B0 , B1+ maps, and virtual observation point (VOP) data were acquired from 72 subjects (study groups of 48/12 healthy Europeans/Asians and 12 Europeans with pathological or incidental findings) using an 8Tx/32Rx head coil on a 7T whole-body MR system. Combined optimization values (COV) were defined as combination of spiral-nonselective (SPINS) trajectory parameters and an energy regularization weight. A set of COV was optimized universally by simulating the individual RF pulse optimizations of 12 training data sets (healthy Europeans). Subsequently, corresponding universal pulses (UPs) were calculated. Using COV and UPs, individually optimized pulses (IOPs) were calculated during the sequence preparation phase (maximum 15 s). Two different UPs and IOPs were evaluated by calculating their normalized root-mean-square error (NRMSE) of the FA and SAR in simulations of all data sets. Seven additional subjects were examined using an MPRAGE sequence that uses the designed pTx excitation pulses and a conventional adiabatic inversion. RESULTS: All pTx pulses resulted in decreased mean NRMSE compared to a circularly polarized (CP) pulse (CP = ~28%, UPs = ~17%, and IOPs = ~12%). UPs and IOPs improved homogeneity for all subjects. Differences in NRMSE between study groups were much lower than differences between different pulse types. CONCLUSION: UPs can be used to generate fast online-customized (FOCUS) pulses gaining lower NRMSE and/or lower SAR values.


Asunto(s)
Encéfalo/diagnóstico por imagen , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Algoritmos , Lesiones Encefálicas/diagnóstico por imagen , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Adulto Joven
4.
J Magn Reson Imaging ; 47(6): 1562-1571, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29159855

RESUMEN

BACKGROUND: The excitation inhomogeneity artifact occurring at 3T in the abdomen can lead to dramatic loss of signal and contrast, thereby hampering diagnosis. PURPOSE: To assess excitation homogeneity and image quality achieved by nonselective prototypical kT -points pulses, compared to tailored static RF shimming, in clinical routine on a commercial dual-transmit scanner. STUDY TYPE: Retrospective study with Institutional Review Board approval; informed consent was waived. POPULATION: Fifty consecutive patients referred for liver MRI at a single hospital. FIELD STRENGTH/SEQUENCE: 3D breath-hold dynamic contrast-enhanced (DCE) MRI at 3T. ASSESSMENT: Flip angle homogeneity was estimated via numerical simulation based on measured static and RF field maps. In all, 20 of the 50 patients underwent DCE-MRI while a pulse designer was present. The effect of RF shimming and kT -point pulses could be compared by repeating the acquisition with each transmit scheme before injection and in the late phase. Signal homogeneity, T1 contrast, enhancement quality, structure details, and global image quality were assessed on a 4-level scale (0 to 3) by two radiologists. STATISTICAL TESTS: Means were compared using Wilcoxon signed-rank tests. RESULTS: Normalized root mean square flip angle error was significantly reduced with kT -points compared to static RF shimming (8.5% ± 1.5% [mean ± standard deviation, SD] vs. 20.4% ± 9.8%; P < 0.0001). The worst case (heavy ascites) led to 13.0% (kT -points) vs. 54.9% (RF shimming). Global image quality was significantly higher for kT -points (2.3 ± 0.5 vs. 1.9 ± 0.6; P = 0.008). One subject's examination was judged unusable with RF shimming by one reader, none with kT -points. 85% of kT -points acquisitions were graded at least 2/3, and only 55% for static RF shimming. DATA CONCLUSION: KT -points reduce excitation inhomogeneity quantitatively and qualitatively, especially in patients with ascites and prone to B1 shading. LEVEL OF EVIDENCE: 1 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:1562-1571.


Asunto(s)
Artefactos , Procesamiento de Imagen Asistido por Computador/métodos , Hígado/diagnóstico por imagen , Imagen por Resonancia Magnética , Radiología , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Ascitis/diagnóstico por imagen , Simulación por Computador , Femenino , Humanos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Masculino , Persona de Mediana Edad , Modelos Teóricos , Páncreas/diagnóstico por imagen , Reproducibilidad de los Resultados , Estudios Retrospectivos , Procesamiento de Señales Asistido por Computador , Adulto Joven
5.
Magn Reson Med ; 71(4): 1381-93, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23716347

RESUMEN

PURPOSE: To improve B1 and B0 inhomogeneity mitigation performance of spatially selective radio-frequency (RF) pulses in parallel transmission while decreasing RF pulse power. Further enhancement of off-resonance correction for rectilinear spoke-trajectory-based RF pulses with known residual geometric distortions after optimization. METHODS: The appropriate definition of the target magnetization pattern is discussed regarding the maximum physical excitation resolution. Furthermore, a novel variable-density trajectory design is introduced, which subsamples accrued B0 phase error elevations in k-space. A simulation study (echo-planar and spiral 2DRF) at different off-resonance levels and pulse acceleration factors was pursued using data from a whole-body 2-channel parallel transmit 3T MRI system. The new trajectory design for echo-planar 2DRF was validated in human in-vivo experiments. RESULTS: Proper target pattern definition can require spatial filtering, such that RF pulse optimization is prevented from lower excitation performance with significant higher RF power level. The new trajectory design proposed can considerably improve off-resonance compensation, while further reducing the RF power, e.g., 43% less RMSE with 79% less RF power for spoke based pulses. CONCLUSION: The proposed methods offer significant improvements of the excitation performance (homogeneity and acceleration), while significantly decreasing the RF power. Furthermore, single-channel transmit RF pulse performance can be similarly improved.


Asunto(s)
Algoritmos , Artefactos , Encéfalo/anatomía & histología , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Humanos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
6.
Comput Med Imaging Graph ; 31(2): 91-102, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17188841

RESUMEN

We introduce a clinical prototype for 3D soft tissue imaging to support surgical or interventional procedures based on a mobile C-arm. An overview of required methods and materials is followed by first clinical images of animals and human patients including dosimetry. The mobility and flexibility of 3D C-arms gives free access to the patient and therefore avoids relocation of the patient between imaging and surgical intervention. Image fusion with diagnostic data (MRI, CT, PET) is demonstrated and promising applications for brachytherapy, RFTT and others are discussed.


Asunto(s)
Tejido Conectivo , Imagenología Tridimensional/instrumentación , Sistemas de Atención de Punto , Algoritmos , Animales , Tejido Conectivo/diagnóstico por imagen , Alemania , Humanos , Radiografía
7.
J Magn Reson ; 258: 65-80, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26232364

RESUMEN

For piecewise constant magnetic fields, the Bloch equations (without relaxation terms) can be solved explicitly. This way the magnetization created by an excitation pulse can be written as a concatenation of rotations applied to the initial magnetization. For fixed gradient trajectories, the problem of finding parallel RF waveforms, which minimize the difference between achieved and desired magnetization on a number of voxels, can thus be represented as a finite-dimensional minimization problem. We use quaternion calculus to formulate this optimization problem in the magnitude least squares variant and specify first and second order derivatives of the objective function. We obtain a small tip angle approximation as first order Taylor development from the first order derivatives and also develop algorithms for first and second order derivatives for this small tip angle approximation. All algorithms are accompanied by precise floating point operation counts to assess and compare the computational efforts. We have implemented these algorithms as callback functions of an interior-point solver. We have applied this numerical optimization method to example problems from the literature and report key observations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA