RESUMEN
Several complexes of the intramolecular frustrated Lewis pair (FLP)-supported P(-1) ligand [iPr2P(C6H4)BCy2{P}]- are presented (Cy=cyclohexyl). Chief among these is the first example of a monomeric zinc bis(phosphido) complex, which was synthesized as a potential precursor for the solution-phase deposition of Zn3P2. While this goal was ultimately unsuccessful, the Zn(II) complex acts as a convenient springboard to other metal phosphide species via transmetallation: affording a tellurium bis(phosphido) complex and a formal adduct of the phosphorus subhalide PPCl2. Trapping experiments show that the PPCl2 adduct can also be prepared directly through the inâ situ reduction of PCl3 in the presence of an intramolecular FLP ligand. Lastly, we report a formal η2-phosphaborene complex of cobalt(-1) which is isoelectronic to olefin complexes, and explore its bonding via density functional theory (DFT) computations.
RESUMEN
The syntheses of novel N-heterocyclic carbene (NHC) adducts of group 13, 14 and 15 element hydrides are reported. Salt metathesis reactions between NaPH2 and IDipp â GeH2 BH2 OTf (1) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene) led to mixtures of the two isomers IDipp â GeH2 BH2 PH2 (2 a) and IDipp â BH2 GeH2 PH2 (2 b); by altering the reaction conditions an almost exclusive formation of 2 b was achieved. Attempts to purify mixtures of 2 a and 2 b by re-crystallization from THF afforded a salt [IDipp â GeH2 BH2 â IDipp][PHGeH2 BH2 PH2 BH2 GeH2 ] (4) that contains the novel anionic cyclohexyl-like inorganic heterocycle [PHGeH2 BH2 PH2 BH2 GeH2 ]- . In addition, the borane adducts IDipp â GeH2 BH2 PH2 BH3 (3 a) and IDipp â BH2 GeH2 PH2 BH3 (3 b) as even longer chain compounds were obtained from reactions of 2 a/2 b with H3 B â SMe2 and were studied by NMR spectroscopy. Accompanying DFT computations give insight into the mechanism and energetics associated with 2 a/2 b isomerization as well as their decomposition pathways.
RESUMEN
Frustrated Lewis pairs (FLPs) have been the subject of considerable study since the field's inception. While much of the research into FLPs has centered around small molecule activation for diverse stoichiometric and catalytic transformations, intramolecular FLPs also show promise as chelating ligands. The cooperative action of Lewis basic and acidic moieties enables intramolecular FLPs to stabilize low oxidation state centers and (consequently) reactive molecular fragments through a donor-acceptor approach, making them an attractive ligand class in main group element chemistry. This review outlines the state of FLP chelation to date throughout the p-block, encompassing primarily groups 13-16.
RESUMEN
This review serves to document advances in the synthesis, versatile bonding, and reactivity of molecular main group metal hydrides within Groups 1, 2, and 12-16. Particular attention will be given to the emerging use of said hydrides in the rapidly expanding field of Main Group element-mediated catalysis. While this review is comprehensive in nature, focus will be given to research appearing in the open literature since 2001.
Asunto(s)
Metales , CatálisisRESUMEN
We report phosphinidenes (PR) stabilized by an intramolecular frustrated Lewis pair (FLP) chelate. These adducts include the parent phosphinidene, PH, which is accessed via thermolysis of coordinated HPCO. The reported FLP-PH species acts as a springboard to other phosphorus-containing compounds, such as FLP-adducts of diphosphorus (P2 ) and InP3 . Our new adducts participate in thermal- or light-induced phosphinidene elimination (of both PH and PR, R=organic group), transfer P2 units to an organic substrate, and yield the useful semiconductor InP at only 110 °C from solution.
RESUMEN
The synthesis, characterization and reactivity studies of the NHC-stabilized complex IDipp â GeH2 BH2 OTf (1) (IDipp=1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene) are reported. Nucleophilic substitution of the triflate (OTf) group in 1 by phosphine or arsine donors provides access to the cationic group 13/14/15 chains [IDipp â GeH2 BH2 ERR1 R2 ]+ (2 E=P; R, R1 =H; R2 =t Bu; 3 E=P; R=H; R1 , R2 =Ph; 4 a E=P; R, R1 , R2 =Ph; 4 b E=As; R, R1 , R2 =Ph). These novel cationic chains were characterized by X-ray crystallography, NMR spectroscopy and mass spectrometry. Moreover, the formation of the parent complexes [IDipp â GeH2 BH2 PH3 ][OTf] (5) and [IDipp â GeH3 ][OTf] (6) were achieved by reaction of 1 with PH3 . Accompanying DFT computations give insight into the stability of the formed chains with respect to their decomposition.
RESUMEN
An intramolecular phosphine-borane frustrated Lewis pair (FLP) chelate, iPr2P(C6H4)BCy2 or PB (Cy = cyclohexyl), was used to coordinate aminoborane (H2BNH2) and iminoborane (HBNH) units via donor-acceptor stabilization. Attempts to induce dehydrogenation from these B-N adducts with known metal catalysts (or pre-catalysts) have been unsuccessful thus far, and related observations were noted with an H2BNH2 complex supported by a modified FLP chelate bearing a geometrically constrained bicyclic 9-borabicyclo(3.3.1)nonane (BBN) unit. Treatment of the iminoborane adduct [PB{HBNH}] with a chlorinating agent led to ligand activation via B-C bond cleavage instead of the expected H/Cl exchange at boron to give [PB{ClBNH}]. Nucleophilic attack at the boron center in [PB{HBNH}] was observed upon addition of BnK (Bn = benzyl), yielding the amidoborate complex [PB{H(Bn)BNH}{K(THF)2}].
RESUMEN
The discovery of metallic conductivity in polyacetylene [-HC=CH-]n upon doping represents a landmark achievement. However, the insolubility of polyacetylene and a dearth of methods for its chemical modification have limited its widespread use. Here, we employ a ring-opening metathesis polymerization (ROMP) protocol to prepare functionalized polyacetylenes (fPAs) bearing: (1)â electron-deficient boryl (-BR2 ) and phosphoryl (-P(O)R2 ) side chains; (2)â electron-donating amino (-NR2 ) groups, and (3)â ring-fused 1,2,3-triazolium units via strain-promoted Click chemistry. These functional groups render most of the fPAs soluble and can lead to intense light absorption across the visible to near-IR region. Also, the presence of redox-active boryl and amino groups leads to opposing near-IR optical responses upon (electro)chemical reduction or oxidation. Some of the resulting fPAs show greatly enhanced air stability when compared to known polyacetylenes. Lastly, these fPAs can be cross-linked to yield network materials with the full retention of optical properties.
RESUMEN
The synthesis of the new bulky vinyllithium reagent (Me IPr=CH)Li, (Me IPr=[(MeCNDipp)2 C]; Dipp=2,6-iPr2 C6 H3 ) is reported. This vinyllithium precursor was found to act as a general source of the anionic 2σ, 2π-electron donor ligand [Me IPr=CH]- . Furthermore, a high-yielding route to the degradation-resistant SiII precursor Me IPrâ SiBr2 is presented. The efficacy of (Me IPr=CH)Li in synthesis was demonstrated by the generation of a complete inorganic divinyltetrelene series (Me IPrCH)2 E: (E=Si to Pb). (Me IPrCH)2 Si: represents the first two-coordinate acyclic silylene not bound by heteroatom donors, with dual electrophilic and nucleophilic character at the SiII center noted. Cyclic voltammetry shows this electron-rich silylene to be a potent reducing agent, rivalling the reducing power of the 19-electron complex cobaltocene (Cp2 Co).
RESUMEN
Anionic N-heterocyclic olefins (aNHOs) are suited well for the stabilization of low-coordinate inorganic complexes, due to their steric tunability and strong σ- and π-electron donating abilities. In this study, the new two-coordinate zinc complex (MeIPrCH)2Zn (MeIPrCH = [(MeCNDipp)2CâCH]-, Dipp = 2,6-diisopropylphenyl) is shown to participate in a broad range of metathesis reactions with main group element-based halides and hydrides. In the case of the group 14 halides, Cl2E·dioxane (E = Ge and Sn), transmetalation occurs to form dinuclear propellane-shaped cations, [(MeIPrCHE)2(µ-Cl)]+, while the aNHO-capped phosphine ligand MeIPrCH-PPh2 is obtained when (MeIPrCH)2Zn is combined with ClPPh2. Lastly, ZnH2 elimination drives transmetalation between (MeIPrCH)2Zn and hydroboranes and hydroalumanes, leading to Lewis acidic aNHO-supported -boryl and -alane products.
RESUMEN
A series of planar π-extended Te-containing heteroacenes, termed tellura(benzo)bithiophenes, were synthesized. This new structural class of heterocycle features a tellurophene ring fused to a benzobithiophene unit with aromatic side groups (either -C6H4iPr or -C6H4OCH3) positioned at the 2- and 5-positions of the tellurophene moiety. Although attempts to enhance molecular rigidity and extend ring-framework π-delocalization in a cumenyl (-C6H4iPr)-capped tellura(benzo)bithiophene led to oxidation (and Te-C bond scission) to form a diene-one, the formation of an oligomeric tellura(benzo)bithiophene was possible via Kumada catalyst-transfer polycondensation (KCTP). Furthermore, one tellura(benzo)bithiophene derivative exhibits orange-red phosphorescence at room temperature in air when incorporated into a poly(methyl methacrylate) host; accompanying TD-DFT computations provided insight into a potential mechanism for the observed phosphorescence.
RESUMEN
The stabilization of silicon(II) and germanium(II) dihydrides by an intramolecular Frustrated Lewis Pair (FLP) ligand, PB, i Pr2 P(C6 H4 )BCy2 (Cy=cyclohexyl) is reported. The resulting hydride complexes [PB{SiH2 }] and [PB{GeH2 }] are indefinitely stable at room temperature, yet can deposit films of silicon and germanium, respectively, upon mild thermolysis in solution. Hallmarks of this work include: 1)â the ability to recycle the FLP phosphine-borane ligand (PB) after element deposition, and 2)â the single-source precursor [PB{SiH2 }] deposits Si films at a record low temperature from solution (110 °C). The dialkylsilicon(II) adduct [PB{SiMe2 }] was also prepared, and shown to release poly(dimethylsilane) [SiMe2 ]n upon heating. Overall, this study introduces a "closed loop" deposition strategy for semiconductors that steers materials science away from the use of harsh reagents or high temperatures.
RESUMEN
Major advances in optoelectronic technologies (e. g., solar cells, organic light-emitting diodes, etc ) are prefaced by the discovery of new synthetic methodologies. In this review, the key role of the Fagan-Nugent reaction in enabling our team (and others) to gain access to new building blocks for luminescent materials and conjugated polymers bearing p-block elements will be described. The Fagan-Nugent reaction is extremely powerful as a synthetic tool since the efficient zirconium-element atom exchange involved affords a wide range of unsaturated inorganic heterocycles of controllable composition and function.
RESUMEN
Electron-donating N-heterocyclic carbenes (Lewis bases, LB) and electron-accepting Lewis acids (LA) have been used in tandem to yield donor-acceptor complexes of inorganic tetrelenes LB·EH2·LA (E = Si, Ge, and Sn). Herein, we introduce the new germanium (II) dihydride adducts ImMe2·GeH2·BH3 (ImMe2 = (HCNMe)2C:) and ImiPr2Me2·GeH2·BH3 (ImiPr2Me2 = (MeCNiPr)2C:), with the former complex containing nearly 40 wt % germanium. The thermal release of bulk germanium from ImMe2·GeH2·BH3 (and its deuterated isotopologue ImMe2·GeD2·BD3) was examined in solution, and a combined kinetic and computational investigation was undertaken to probe the mechanism by which Ge is liberated. Moreover, the thermolysis of ImMe2·GeH2·BH3 in solution cleanly affords conformal nanodimensional layers of germanium as thin films of variable thicknesses (20-70 nm) on silicon wafers. We also conducted a computational investigation into potential decomposition pathways for the germanium(II)- and tin(II)-dihydride complexes NHC·EH2·BH3 (NHC = [(HCNR)2C:]; R = 2,6-iPr2C6H3 (Dipp), Me, and H; and E = Ge and Sn). Overall, this study introduces a mild and convenient solution-only protocol for the deposition of thin films of Ge, a widely used semiconductor in materials research and industry.
RESUMEN
We introduce a large-scale synthesis of a sterically encumbered N-heterocyclic olefin (NHO) and illustrate the ability of its deprotonated form to act as an anionic four-electron bridging ligand. The resulting multicenter donating ability has been used to link two low oxidation state Ge(II) centers in close proximity, leading to bridging Ge-Cl-Ge and Ge-H-Ge bonding environments supported by Ge2C2 heterocyclic manifolds. Reduction of a dimeric [RGeCl]2 species (R = anionic NHO, [(MeCNDipp)2CâCH]-; Dipp = 2,6-iPr2C6H3) did not give the expected acyclic RGeGeR analogue of an alkyne, but rather ligand migration/disproportionation transpired to yield the known diorganogermylene R2Ge and Ge metal. This process was examined computationally, and the ability of the reported anionic NHO to undergo atom migration chemistry contrasts with what is typically found with bulky monoanionic ligands (such as terphenyl ligands).
RESUMEN
New N-heterocyclic olefins (NHOs) are described with functionalization on the ligand heterocyclic backbone and terminal alkylidene positions. Various PdII -NHO complexes have been formed and their use as pre-catalysts in Buchwald-Hartwig aminations was explored. The most active system for catalytic C-N bond formation between hindered arylamine and arylhalide substrates was accessed by combining a backbone methylated NHO with [Pd(cinnamyl)Cl]2 in the presence of NaOtBu as a base. In these active systems evidence suggests that catalysis is mediated by colloidal palladium metal, highlighting a different coordination ability of NHOs in comparison with commonly used N-heterocyclic carbene co-ligands.
RESUMEN
Guest-controlled diastereoselective self-assembly of a diboryltellurophene and a chiral tetrol bearing an indacene backbone was achieved to give either hetero- or homochiral macrocyclic boronic esters, selectively. The heterochiral isomer (hetero-[2+2]Te ) exhibited a higher inclusion ability for electron-deficient aromatic guests, leading to effective quenching of phosphorescence from the diboryltellurophene moieties. The reported macrocycles collectively represent a promising arene sensing approach based on phosphorescence.
RESUMEN
A modular route to previously inaccessible classes of ring-fused π-extended heteroacenes bearing the heavy inorganic element tellurium (Te) is presented. These new materials can be viewed as n-doped analogs of molecular graphene subunits that exhibit color tunable visible light phosphorescence in the solid state and in the presence of air. The general mechanism of phosphorescence in these systems was probed experimentally and computationally via time-dependent density functional theory (TD-DFT). The incorporation of Te into π-extended oligoacene frameworks was achieved by an efficient Zr/Te transmetalation protocol; related zirconium-element exchange reactions have been used to prepare both electron-rich and electron-deficient heterocycles containing different elements from throughout the p-block. Therefore, the current study provides a clear path to incorporate inorganic elements into heteroacenes of greater complexity and side group selectivity compared to existing synthetic routes.
RESUMEN
N-Heterocyclic olefins (NHOs) have gone from the topic of a few scattered (but important) reports in the early 1990s to very recently being a ligand/reagent of choice in the far-reaching research fields of organocatalysis, olefin and heterocycle polymerization, and low oxidation state main group element chemistry. NHOs are formally derived by appending an alkylidene (CR2) unit onto an N-heterocyclic carbene (NHC), and their pronounced ylidic character leads to high nucleophilicity and soft Lewis basic character at the ligating carbon atom. These olefinic donors can also be structurally derived from imidazole, triazole, and thiazole-based heterocyclic carbenes and, as a result, have highly tunable electronic and steric properties. In this Account, we will focus on various synthetic routes to imidazole-2-ylidene derived NHOs (sometimes referred to as deoxy-Breslow intermediates) followed by a discussion of the electron-donor ability of this structurally tunable ligand group. It should be mentioned that NHOs have a close structural analogy with Breslow-type intermediates, N-heterocyclic ketene aminals, and ß-azolium ylides; while these latter species play important roles in advancing synthetic organic chemistry, discussion in this Account will be confined mostly to imidazole-2-ylidene derived NHOs. In addition, we will cover selected examples from the literature where NHOs and their anionic counterparts, N-heterocyclic vinylenes, are used to access reactive main group species not attainable using traditional ligands. Added motivation for these studies comes from the emerging number of low coordinate main group element based compounds that display reactivity once reserved for precious metal complexes (such as H-H and C-H bond activation). Moreover, NHOs are versatile precursors to new mixed element (P/C and N/C), and potentially bidentate, ligand constructs of great potential in catalysis, where various metal oxidation states and coordination environments need to be stabilized during a catalytic cycle. The most active area of recent growth for NHOs is their use as nucleophiles to promote efficient organocatalytic transformations, including transesterification, carbonyl reduction, and the conversion of CO2 into value added products. Polyesters have also been generated through the NHO-promoted ring-opening polymerization of lactones, and the highly tunable nature of NHO organocatalysts allows for the rapid screening and enhancement of catalytic performance. Therefore, the growing utility of NHOs in the realm of organic and polymer chemistry can be viewed as evidence of the widespread impact of N-heterocyclic olefins on the chemical community. It is hoped that through this Account others will join this flourishing research domain and that the rapid recent growth of NHO chemistry is sustained for the foreseeable future.
RESUMEN
The introduction of the labile trimethylsiloxy group to GeII centers in the presence of an N-heterocyclic carbene donor is reported. The new complex IPrâ GeCl(OSiMe3 ) (IPr=[(HCNDipp)2 C:]; Dipp=2,6-iPr2 C6 H3 ) was readily converted into the structurally unique GeII siloxy(hydrido)germylene IPrâ GeH(OSiMe3 )â BH3 by treatment with lithium borohydride. Additionally, the reactive siloxygermylene cation [IPrâ Ge(OSiMe3 )]+ was synthesized and clean oxidative addition of CH2 Cl2 was demonstrated. The two-coordinate [IPrâ Ge(OSiMe3 )]+ cation also promoted the catalytic hydroborylation of sterically hindered ketones under mild conditions, with enhanced reactivity stemming from an open coordination site at Ge.