Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lancet Planet Health ; 5(11): e775-e785, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34774121

RESUMEN

BACKGROUND: The consumption of ultra-processed foods has increased worldwide and has been related to the occurrence of obesity and other non-communicable diseases. However, little is known about the environmental effects of ultra-processed foods. We aimed to assess the temporal trends in greenhouse gas emissions (GHGE), water footprint, and ecological footprint of food purchases in Brazilian metropolitan areas, and how these are affected by the amount of food processing. METHODS: In this time-series study, we used data from five Brazilian Household Budget Surveys (1987-88, 1995-96, 2002-03, 2008-09, 2017-18) to calculate GHGE, water footprint, and ecological footprint per 1000 kcal of food and beverages purchased. Food items were classified into NOVA food groups: unprocessed or minimally processed foods (G1); processed culinary ingredients (G2); processed foods (G3); and ultra-processed foods (G4). We calculated the proportion each NOVA food group contributes to daily kcal per person. Linear regression was performed to evaluate trends of the environmental impacts across the years. FINDINGS: Between 1987-88 and 2017-18, diet-related GHGE increased by 21% (from 1538·6 g CO2 equivalent [CO2e] per 1000 kcal [95% CI 1473·3-1604·0] to 1866·0 g CO2e per 1000 kcal [1788·0-1944·0]; ptrend<0·0001), diet-related water footprint increased by 22% (from 1447·2 L/1000 kcal [95% CI 1400·7-1493·8] to 1769·1 L/1000 kcal [1714·5-1823·7]; ptrend<0·0001), and diet-related ecological footprint increased by 17% (from 9·69 m2/1000 kcal [95% CI 9·33-10·05] to 11·36 m2/1000 kcal [10·91-11·81]; ptrend<0·0001). We found that the change in the environmental indicators over time varied between NOVA food groups. We did not find evidence of a change in the environmental indicators for G1 foods over time. GHGE from G2 foods decreased by 18% (ptrend<0·0001), whereas GHGE from G4 foods increased by 245% (ptrend<0·0001). The water footprint from G2 foods decreased by 17% (ptrend<0·0001) whereas the water footprint from G4 foods increased by 233% (ptrend<0·0001). The ecological footprint from G2 foods decreased by 13% (ptrend<0·0001), whereas the ecological footprint from G3 foods increased by 49% (ptrend<0·0001) and from G4 foods increased by 183% (ptrend<0·0001). We found no significant change in contribution by any other NOVA food groups to any of the three environmental indicators over the study period. INTERPRETATION: The environmental effects of the Brazilian diet have increased over the past three decades along with increased effects from ultra-processed foods. This means that dietary patterns in Brazil are becoming potentially more harmful to human and planetary health. Therefore, a shift in the current trend would be needed to enhance sustainable healthy food systems. FUNDING: Science and Technologies Facilities Council-Global Challenges Research Fund.


Asunto(s)
Gases de Efecto Invernadero , Brasil , Comportamiento del Consumidor , Comida Rápida , Humanos , Agua
2.
Nat Food ; 1(12): 787-791, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37128063

RESUMEN

Food is widely acknowledged as a major contributor to climate change but estimates of food-related greenhouse gas (GHG) emissions frequently consider supply chain stages only up to the farm gate or regional distribution centres. Here we estimate GHG emissions associated with different cooking methods and appliances in the UK. Data on current cooking practices were collected through a survey with more than 700 respondents. Our results reveal that home cooking accounts for as much as 61% of total emissions associated with specific foods, and that this can be substantially reduced through alternative, readily available cooking practices.

3.
Sustainability ; 12(6): 2323, 2020 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-32499923

RESUMEN

Food systems contribute to up to 37% of global greenhouse gas emissions, and emissions are increasing. Since the emissions vary greatly between different foods, citizens' choices can make a big difference to climate change. Public engagement events are opportunities to communicate these complex issues: to raise awareness about the impact of citizens' own food choices on climate change and to generate support for changes in all food system activities, the food environment and food policy. This article summarises findings from our 'Take a Bite Out of Climate Change' stand at two UK outreach activities during July 2019. We collected engagement information in three main ways: (1) individuals were invited to complete a qualitative evaluation questionnaire comprising of four questions that gauged the person's interests, perceptions of food choices and attitudes towards climate change; (2) an online multiple-choice questionnaire asking about eating habits and awareness/concerns; and (3) a token drop voting activity where visitors answered the question: 'Do you consider greenhouse gases when choosing food?' Our results indicate whether or not people learnt about the environmental impacts of food (effectiveness), how likely they are to move towards a more climate-friendly diet (behavioural change), and how to gather information more effectively at this type of event.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA