RESUMEN
Checkpoint blockade immunotherapies enable the host immune system to recognize and destroy tumour cells. Their clinical activity has been correlated with activated T-cell recognition of neoantigens, which are tumour-specific, mutated peptides presented on the surface of cancer cells. Here we present a fitness model for tumours based on immune interactions of neoantigens that predicts response to immunotherapy. Two main factors determine neoantigen fitness: the likelihood of neoantigen presentation by the major histocompatibility complex (MHC) and subsequent recognition by T cells. We estimate these components using the relative MHC binding affinity of each neoantigen to its wild type and a nonlinear dependence on sequence similarity of neoantigens to known antigens. To describe the evolution of a heterogeneous tumour, we evaluate its fitness as a weighted effect of dominant neoantigens in the subclones of the tumour. Our model predicts survival in anti-CTLA-4-treated patients with melanoma and anti-PD-1-treated patients with lung cancer. Importantly, low-fitness neoantigens identified by our method may be leveraged for developing novel immunotherapies. By using an immune fitness model to study immunotherapy, we reveal broad similarities between the evolution of tumours and rapidly evolving pathogens.
Asunto(s)
Antígenos de Neoplasias/inmunología , Inmunoterapia , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/terapia , Melanoma/inmunología , Melanoma/terapia , Modelos Inmunológicos , Presentación de Antígeno , Antígenos de Neoplasias/genética , Antígeno CTLA-4/antagonistas & inhibidores , Antígeno CTLA-4/genética , Antígeno CTLA-4/inmunología , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/terapia , Puntos de Control del Ciclo Celular/genética , Puntos de Control del Ciclo Celular/inmunología , Estudios de Cohortes , Evolución Molecular , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Activación de Linfocitos , Melanoma/genética , Melanoma/patología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/inmunología , Análisis de Supervivencia , Linfocitos T/inmunologíaRESUMEN
Programmed death-ligand 1 (PD-L1) expression on tumor cells (TCs) by immunohistochemistry is rapidly gaining importance as a diagnostic for the selection or stratification of patients with non-small cell lung cancer (NSCLC) most likely to respond to single-agent checkpoint inhibitors. However, at least two distinct patterns of PD-L1 expression have been observed with potential biological and clinical relevance in NSCLC: expression on TC or on tumor-infiltrating immune cells (ICs). We investigated the molecular and cellular characteristics associated with PD-L1 expression in these distinct cell compartments in 4,549 cases of NSCLC. PD-L1 expression on IC was more prevalent and likely reflected IFN-γ-induced adaptive regulation accompanied by increased tumor-infiltrating lymphocytes and effector T cells. High PD-L1 expression on TC, however, reflected an epigenetic dysregulation of the PD-L1 gene and was associated with a distinct histology described by poor immune infiltration, sclerotic/desmoplastic stroma, and mesenchymal molecular features. Importantly, durable clinical responses to atezolizumab (anti-PD-L1) were observed in patients with tumors expressing high PD-L1 levels on either TC alone [40% objective response rate (ORR)] or IC alone (22% ORR). Thus, PD-L1 expression on TC or IC can independently attenuate anticancer immunity and emphasizes the functional importance of IC in regulating the antitumor T cell response.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antígeno B7-H1/inmunología , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Neoplasias Pulmonares/inmunología , Anticuerpos Monoclonales Humanizados , Humanos , Inmunohistoquímica/métodos , Neoplasias Pulmonares/tratamiento farmacológico , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Masculino , Persona de Mediana Edad , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunologíaRESUMEN
BACKGROUND: Approximately 25% of all patients with non-small-cell lung cancer present with resectable stage IB-IIIA disease, and although perioperative chemotherapy is the standard of care, this treatment strategy provides only modest survival benefits. On the basis of the activity of immune checkpoint inhibitors in metastatic non-small-cell lung cancer, we designed a trial to test the activity of the PD-L1 inhibitor, atezolizumab, with carboplatin and nab-paclitaxel given as neoadjuvant treatment before surgical resection. METHODS: This open-label, multicentre, single-arm, phase 2 trial was done at three hospitals in the USA. Eligible patients were aged 18 years or older and had resectable American Joint Committee on Cancer-defined stage IB-IIIA non-small-cell lung cancer, an Eastern Cooperative Oncology Group performance status of 0-1, and a history of smoking exposure. Patients received neoadjuvant treatment with intravenous atezolizumab (1200 mg) on day 1, nab-paclitaxel (100 mg/m2) on days 1, 8, and 15, and carboplatin (area under the curve 5; 5 mg/mL per min) on day 1, of each 21-day cycle. Patients without disease progression after two cycles proceeded to receive two further cycles, which were then followed by surgical resection. The primary endpoint was major pathological response, defined as the presence of 10% or less residual viable tumour at the time of surgery. All analyses were intention to treat. This study is registered with ClinicalTrials.gov, NCT02716038, and is ongoing but no longer recruiting participants. FINDINGS: Between May 26, 2016, and March 1, 2019, we assessed 39 patients for eligibility, of whom 30 patients were enrolled. 23 (77%) of these patients had stage IIIA disease. 29 (97%) patients were taken into the operating theatre, and 26 (87%) underwent successful R0 resection. At the data cutoff (Aug 7, 2019), the median follow-up period was 12·9 months (IQR 6·2-22·9). 17 (57%; 95% CI 37-75) of 30 patients had a major pathological response. The most common treatment-related grade 3-4 adverse events were neutropenia (15 [50%] of 30 patients), increased alanine aminotransferase concentrations (two [7%] patients), increased aspartate aminotransferase concentration (two [7%] patients), and thrombocytopenia (two [7%] patients). Serious treatment-related adverse events included one (3%) patient with grade 3 febrile neutropenia, one (3%) patient with grade 4 hyperglycaemia, and one (3%) patient with grade 2 bronchopulmonary haemorrhage. There were no treatment-related deaths. INTERPRETATION: Atezolizumab plus carboplatin and nab-paclitaxel could be a potential neoadjuvant regimen for resectable non-small-cell lung cancer, with a high proportion of patients achieving a major pathological response, and manageable treatment-related toxic effects, which did not compromise surgical resection. FUNDING: Genentech and Celgene.
Asunto(s)
Anticuerpos Monoclonales Humanizados/administración & dosificación , Antineoplásicos Inmunológicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Neoplasias Pulmonares/terapia , Terapia Neoadyuvante , Neumonectomía , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano , Albúminas/administración & dosificación , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Boston , Carboplatino/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/inmunología , Carcinoma de Pulmón de Células no Pequeñas/patología , Quimioterapia Adyuvante , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Terapia Neoadyuvante/efectos adversos , Estadificación de Neoplasias , Ciudad de Nueva York , Paclitaxel/administración & dosificación , Neumonectomía/efectos adversos , Receptor de Muerte Celular Programada 1/inmunología , Factores de Tiempo , Resultado del TratamientoRESUMEN
BACKGROUND: Immune checkpoint inhibitors are a new standard of care for patients with advanced non-small-cell lung cancer (NSCLC) without EGFR tyrosine kinase or anaplastic lymphoma kinase (ALK) genetic aberrations (EGFR-/ALK-), but clinical benefit in patients with EGFR mutations or ALK rearrangements (EGFR+/ALK+) has not been shown. We assessed the effect of durvalumab (anti-PD-L1) treatment in three cohorts of patients with NSCLC defined by EGFR/ALK status and tumour expression of PD-L1. METHODS: ATLANTIC is a phase 2, open-label, single-arm trial at 139 study centres in Asia, Europe, and North America. Eligible patients had advanced NSCLC with disease progression following at least two previous systemic regimens, including platinum-based chemotherapy (and tyrosine kinase inhibitor therapy if indicated); were aged 18 years or older; had a WHO performance status score of 0 or 1; and measurable disease per Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1. Key exclusion criteria included mixed small-cell lung cancer and NSCLC histology; previous exposure to any anti-PD-1 or anti-PD-L1 antibody; and any previous grade 3 or worse immune-related adverse event while receiving any immunotherapy agent. Patients in cohort 1 had EGFR+/ALK+ NSCLC with at least 25%, or less than 25%, of tumour cells with PD-L1 expression. Patients in cohorts 2 and 3 had EGFR-/ALK- NSCLC; cohort 2 included patients with at least 25%, or less than 25%, of tumour cells with PD-L1 expression, and cohort 3 included patients with at least 90% of tumour cells with PD-L1 expression. Patients received durvalumab (10 mg/kg) every 2 weeks, via intravenous infusion, for up to 12 months. Retreatment was allowed for patients who benefited but then progressed after completing 12 months. The primary endpoint was the proportion of patients with increased tumour expression of PD-L1 (defined as ≥25% of tumour cells in cohorts 1 and 2, and ≥90% of tumour cells in cohort 3) who achieved an objective response, assessed in patients who were evaluable for response per independent central review according to RECIST version 1.1. Safety was assessed in all patients who received at least one dose of durvalumab and for whom any post-dose data were available. The trial is ongoing, but is no longer open to accrual, and is registered with ClinicalTrials.gov, number NCT02087423. FINDINGS: Between Feb 25, 2014, and Dec 28, 2015, 444 patients were enrolled and received durvalumab: 111 in cohort 1, 265 in cohort 2, and 68 in cohort 3. Among patients with at least 25% of tumour cells expressing PD-L1 who were evaluable for objective response per independent central review, an objective response was achieved in 9 (12·2%, 95% CI 5·7-21·8) of 74 patients in cohort 1 and 24 (16·4%, 10·8-23·5) of 146 patients in cohort 2. In cohort 3, 21 (30·9%, 20·2-43·3) of 68 patients achieved an objective response. Grade 3 or 4 treatment-related adverse events occurred in 40 (9%) of 444 patients overall: six (5%) of 111 patients in cohort 1, 22 (8%) of 265 in cohort 2, and 12 (18%) of 68 in cohort 3. The most common treatment-related grade 3 or 4 adverse events were pneumonitis (four patients [1%]), elevated gamma-glutamyltransferase (four [1%]), diarrhoea (three [1%]), infusion-related reaction (three [1%]), elevated aspartate aminotransferase (two [<1%]), elevated transaminases (two [<1%]), vomiting (two [<1%]), and fatigue (two [<1%]). Treatment-related serious adverse events occurred in 27 (6%) of 444 patients overall: five (5%) of 111 patients in cohort 1, 14 (5%) of 265 in cohort 2, and eight (12%) of 68 in cohort 3. The most common serious adverse events overall were pneumonitis (five patients [1%]), fatigue (three [1%]), and infusion-related reaction (three [1%]). Immune-mediated events were manageable with standard treatment guidelines. INTERPRETATION: In patients with advanced and heavily pretreated NSCLC, the clinical activity and safety profile of durvalumab was consistent with that of other anti-PD-1 and anti-PD-L1 agents. Responses were recorded in all cohorts; the proportion of patients with EGFR-/ALK- NSCLC (cohorts 2 and 3) achieving a response was higher than the proportion with EGFR+/ALK+ NSCLC (cohort 1) achieving a response. The clinical activity of durvalumab in patients with EGFR+ NSCLC with ≥25% of tumour cells expressing PD-L1 was encouraging, and further investigation of durvalumab in patients with EGFR+/ALK+ NSCLC is warranted. FUNDING: AstraZeneca.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , 4-Butirolactona/análogos & derivados , Anciano , Quinasa de Linfoma Anaplásico/genética , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos Inmunológicos/efectos adversos , Aspartato Aminotransferasas/sangre , Antígeno B7-H1/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Diarrea/inducido químicamente , Receptores ErbB/genética , Fatiga/inducido químicamente , Femenino , Humanos , Reacción en el Punto de Inyección/etiología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Neumonía/inducido químicamente , Supervivencia sin Progresión , Criterios de Evaluación de Respuesta en Tumores Sólidos , gamma-Glutamiltransferasa/sangreRESUMEN
BACKGROUND: We assessed the efficacy and safety of programmed cell death 1 (PD-1) inhibition with pembrolizumab in patients with advanced non-small-cell lung cancer enrolled in a phase 1 study. We also sought to define and validate an expression level of the PD-1 ligand 1 (PD-L1) that is associated with the likelihood of clinical benefit. METHODS: We assigned 495 patients receiving pembrolizumab (at a dose of either 2 mg or 10 mg per kilogram of body weight every 3 weeks or 10 mg per kilogram every 2 weeks) to either a training group (182 patients) or a validation group (313 patients). We assessed PD-L1 expression in tumor samples using immunohistochemical analysis, with results reported as the percentage of neoplastic cells with staining for membranous PD-L1 (proportion score). Response was assessed every 9 weeks by central review. RESULTS: Common side effects that were attributed to pembrolizumab were fatigue, pruritus, and decreased appetite, with no clear difference according to dose or schedule. Among all the patients, the objective response rate was 19.4%, and the median duration of response was 12.5 months. The median duration of progression-free survival was 3.7 months, and the median duration of overall survival was 12.0 months. PD-L1 expression in at least 50% of tumor cells was selected as the cutoff from the training group. Among patients with a proportion score of at least 50% in the validation group, the response rate was 45.2%. Among all the patients with a proportion score of at least 50%, median progression-free survival was 6.3 months; median overall survival was not reached. CONCLUSIONS: Pembrolizumab had an acceptable side-effect profile and showed antitumor activity in patients with advanced non-small-cell lung cancer. PD-L1 expression in at least 50% of tumor cells correlated with improved efficacy of pembrolizumab. (Funded by Merck; KEYNOTE-001 ClinicalTrials.gov number, NCT01295827.).
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Antígeno B7-H1/análisis , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos/efectos adversos , Antígeno B7-H1/metabolismo , Biomarcadores/análisis , Carcinoma de Pulmón de Células no Pequeñas/química , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Supervivencia sin Enfermedad , Femenino , Humanos , Infusiones Intravenosas , Neoplasias Pulmonares/química , Neoplasias Pulmonares/mortalidad , Masculino , Persona de Mediana Edad , Curva ROC , Análisis de SupervivenciaRESUMEN
It has been highlighted that in the original manuscript [1] Table S3 'An example of the predictive computational modeling process. Specific details on an annexure section of the PD-L1 pathway show the step-by-step reactions, mechanisms, and reaction equations that occur. Such reactions also occurred in all of the other pathways' was omitted and did not appear in the Additional files and that the Additional files were miss-numbered thereafter. This Correction shows the correct and incorrect Additional files. The original article has been updated.
RESUMEN
BACKGROUND: Programmed Death Ligand 1 (PD-L1) is a co-stimulatory and immune checkpoint protein. PD-L1 expression in non-small cell lung cancers (NSCLC) is a hallmark of adaptive resistance and its expression is often used to predict the outcome of Programmed Death 1 (PD-1) and PD-L1 immunotherapy treatments. However, clinical benefits do not occur in all patients and new approaches are needed to assist in selecting patients for PD-1 or PD-L1 immunotherapies. Here, we hypothesized that patient tumor cell genomics influenced cell signaling and expression of PD-L1, chemokines, and immunosuppressive molecules and these profiles could be used to predict patient clinical responses. METHODS: We used a recent dataset from NSCLC patients treated with pembrolizumab. Deleterious gene mutational profiles in patient exomes were identified and annotated into a cancer network to create NSCLC patient-specific predictive computational simulation models. Validation checks were performed on the cancer network, simulation model predictions, and PD-1 match rates between patient-specific predicted and clinical responses. RESULTS: Expression profiles of these 24 chemokines and immunosuppressive molecules were used to identify patients who would or would not respond to PD-1 immunotherapy. PD-L1 expression alone was not sufficient to predict which patients would or would not respond to PD-1 immunotherapy. Adding chemokine and immunosuppressive molecule expression profiles allowed patient models to achieve a greater than 85.0% predictive correlation among predicted and reported patient clinical responses. CONCLUSIONS: Our results suggested that chemokine and immunosuppressive molecule expression profiles can be used to accurately predict clinical responses thus differentiating among patients who would and would not benefit from PD-1 or PD-L1 immunotherapies.
Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Antígeno B7-H1/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Simulación por Computador , Inmunoterapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos Inmunológicos/farmacología , Antineoplásicos Inmunológicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Quimiocinas/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Modelos Biológicos , Mutación , Receptor de Muerte Celular Programada 1/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del TratamientoRESUMEN
BACKGROUND: Nivolumab has shown improved survival in the treatment of advanced non-small-cell lung cancer (NSCLC) previously treated with chemotherapy. We assessed the safety and activity of combination nivolumab plus ipilimumab as first-line therapy for NSCLC. METHODS: The open-label, phase 1, multicohort study (CheckMate 012) cohorts reported here were enrolled at eight US academic centres. Eligible patients were aged 18 years or older with histologically or cytologically confirmed recurrent stage IIIb or stage IV, chemotherapy-naive NSCLC. Patients were randomly assigned (1:1:1) by an interactive voice response system to receive nivolumab 1 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks, nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 12 weeks, or nivolumab 3 mg/kg every 2 weeks plus ipilimumab 1 mg/kg every 6 weeks until disease progression, unacceptable toxicities, or withdrawal of consent. Data from the latter two cohorts, which were considered potentially suitable for further clinical development, are presented in this report; data from the other cohort (as well as several earlier cohorts) are described in the appendix. The primary outcome was safety and tolerability, assessed in all treated patients. This ongoing study is registered with ClinicalTrials.gov, number NCT01454102. FINDINGS: Between May 15, 2014, and March 25, 2015, 78 patients were randomly assigned to receive nivolumab every 2 weeks plus ipilimumab every 12 weeks (n=38) or nivolumab every 2 weeks plus ipilimumab every 6 weeks (n=40). One patient in the ipilimumab every-6-weeks cohort was excluded before treatment; therefore 77 patients actually received treatment (38 in the ipilimumab every-12-weeks cohort; 39 in the ipilimumab every-6-weeks cohort). At data cut-off on Jan 7, 2016, 29 (76%) patients in the ipilimumab every-12-weeks cohort and 32 (82%) in the ipilimumab every-6-weeks cohort had discontinued treatment. Grade 3-4 treatment-related adverse events occurred in 14 (37%) patients in the ipilimumab every-12-weeks cohort and 13 (33%) patients in the every-6-weeks cohort; the most commonly reported grade 3 or 4 treatment-related adverse events were increased lipase (three [8%] and no patients), pneumonitis (two [5%] and one [3%] patients), adrenal insufficiency (one [3%] and two [5%] patients), and colitis (one [3%] and two [5%] patients). Treatment-related serious adverse events were reported in 12 (32%) patients in the ipilimumab every-12-weeks cohort and 11 (28%) patients in the every-6-weeks cohort. Treatment-related adverse events (any grade) prompted treatment discontinuation in four (11%) patients in the every-12-weeks cohort and five (13%) patients in the every-6-weeks cohort. No treatment-related deaths occurred. Confirmed objective responses were achieved in 18 (47% [95% CI 31-64]) patients in the ipilimumab every-12-weeks cohort and 15 (38% [95% CI 23-55]) patients in the ipilimumab every-6-weeks cohort; median duration of response was not reached in either cohort, with median follow-up times of 12·8 months (IQR 9·3-15·5) in the ipilimumab every-12-weeks cohort and 11·8 months (6·7-15·9) in the ipilimumab every-6-weeks cohort. In patients with PD-L1 of 1% or greater, confirmed objective responses were achieved in 12 (57%) of 21 patients in the ipilimumab every-12-weeks cohort and 13 (57%) of 23 patients in the ipilimumab every-6-weeks cohort. INTERPRETATION: In NSCLC, first-line nivolumab plus ipilimumab had a tolerable safety profile and showed encouraging clinical activity characterised by a high response rate and durable response. To our knowledge, the results of this study are the first suggestion of improved benefit compared with anti-PD-1 monotherapy in patients with NSCLC, supporting further assessment of this combination in a phase 3 study. FUNDING: Bristol-Myers Squibb.
Asunto(s)
Adenocarcinoma/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Células Escamosas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Adenocarcinoma/patología , Anciano , Anticuerpos Monoclonales/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Células Escamosas/patología , Estudios de Cohortes , Femenino , Estudios de Seguimiento , Humanos , Ipilimumab , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Nivolumab , Pronóstico , Tasa de SupervivenciaRESUMEN
BACKGROUND: PD-L1 and CTLA-4 immune checkpoints inhibit antitumour T-cell activity. Combination treatment with the anti-PD-L1 antibody durvalumab and the anti-CTLA-4 antibody tremelimumab might provide greater antitumour activity than either drug alone. We aimed to assess durvalumab plus tremelimumab in patients with advanced squamous or non-squamous non-small cell lung cancer (NSCLC). METHODS: We did a multicentre, non-randomised, open-label, phase 1b study at five cancer centres in the USA. We enrolled immunotherapy-naive patients aged 18 years or older with confirmed locally advanced or metastatic NSCLC. We gave patients durvalumab in doses of 3 mg/kg, 10 mg/kg, 15 mg/kg, or 20 mg/kg every 4 weeks, or 10 mg/kg every 2 weeks, and tremelimumab in doses of 1 mg/kg, 3 mg/kg, or 10 mg/kg every 4 weeks for six doses then every 12 weeks for three doses. The primary endpoint of the dose-escalation phase was safety. Safety analyses were based on the as-treated population. The dose-expansion phase of the study is ongoing. This study is registered with ClinicalTrials.gov, number NCT02000947. FINDINGS: Between Oct 28, 2013, and April 1, 2015, 102 patients were enrolled into the dose-escalation phase and received treatment. At the time of this analysis (June 1, 2015), median follow-up was 18·8 weeks (IQR 11-33). The maximum tolerated dose was exceeded in the cohort receiving durvalumab 20 mg/kg every 4 weeks plus tremelimumab 3 mg/kg, with two (30%) of six patients having a dose-limiting toxicity (one grade 3 increased aspartate aminotransferase and alanine aminotransferase and one grade 4 increased lipase). The most frequent treatment-related grade 3 and 4 adverse events were diarrhoea (11 [11%]), colitis (nine [9%]), and increased lipase (eight [8%]). Discontinuations attributable to treatment-related adverse events occurred in 29 (28%) of 102 patients. Treatment-related serious adverse events occurred in 37 (36%) of 102 patients. 22 patients died during the study, and three deaths were related to treatment. The treatment-related deaths were due to complications arising from myasthenia gravis (durvalumab 10 mg/kg every 4 weeks plus tremelimumab 1 mg/kg), pericardial effusion (durvalumab 20 mg/kg every 4 weeks plus tremelimumab 1 mg/kg), and neuromuscular disorder (durvalumab 20 mg/kg every 4 weeks plus tremelimumab 3 mg/kg). Evidence of clinical activity was noted both in patients with PD-L1-positive tumours and in those with PD-L1-negative tumours. Investigator-reported confirmed objective responses were achieved by six (23%, 95% CI 9-44) of 26 patients in the combined tremelimumab 1 mg/kg cohort, comprising two (22%, 95% CI 3-60) of nine patients with PD-L1-positive tumours and four (29%, 95% CI 8-58) of 14 patients with PD-L1-negative tumours, including those with no PD-L1 staining (four [40%, 95% CI 12-74] of ten patients). INTERPRETATION: Durvalumab 20 mg/kg every 4 weeks plus tremelimumab 1 mg/kg showed a manageable tolerability profile, with antitumour activity irrespective of PD-L1 status, and was selected as the dose for phase 3 studies, which are ongoing. FUNDING: MedImmune.
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/mortalidad , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/efectos adversos , Anticuerpos Monoclonales Humanizados , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/patología , Supervivencia sin Enfermedad , Relación Dosis-Respuesta a Droga , Esquema de Medicación , Femenino , Estudios de Seguimiento , Humanos , Neoplasias Pulmonares/patología , Masculino , Dosis Máxima Tolerada , Persona de Mediana Edad , Invasividad Neoplásica/patología , Estadificación de Neoplasias , Tasa de Supervivencia , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: In patients with melanoma, ipilimumab (an antibody against cytotoxic T-lymphocyte-associated antigen 4 [CTLA-4]) prolongs overall survival, and nivolumab (an antibody against the programmed death 1 [PD-1] receptor) produced durable tumor regression in a phase 1 trial. On the basis of their distinct immunologic mechanisms of action and supportive preclinical data, we conducted a phase 1 trial of nivolumab combined with ipilimumab in patients with advanced melanoma. METHODS: We administered intravenous doses of nivolumab and ipilimumab in patients every 3 weeks for 4 doses, followed by nivolumab alone every 3 weeks for 4 doses (concurrent regimen). The combined treatment was subsequently administered every 12 weeks for up to 8 doses. In a sequenced regimen, patients previously treated with ipilimumab received nivolumab every 2 weeks for up to 48 doses. RESULTS: A total of 53 patients received concurrent therapy with nivolumab and ipilimumab, and 33 received sequenced treatment. The objective-response rate (according to modified World Health Organization criteria) for all patients in the concurrent-regimen group was 40%. Evidence of clinical activity (conventional, unconfirmed, or immune-related response or stable disease for ≥24 weeks) was observed in 65% of patients. At the maximum doses that were associated with an acceptable level of adverse events (nivolumab at a dose of 1 mg per kilogram of body weight and ipilimumab at a dose of 3 mg per kilogram), 53% of patients had an objective response, all with tumor reduction of 80% or more. Grade 3 or 4 adverse events related to therapy occurred in 53% of patients in the concurrent-regimen group but were qualitatively similar to previous experience with monotherapy and were generally reversible. Among patients in the sequenced-regimen group, 18% had grade 3 or 4 adverse events related to therapy and the objective-response rate was 20%. CONCLUSIONS: Concurrent therapy with nivolumab and ipilimumab had a manageable safety profile and provided clinical activity that appears to be distinct from that in published data on monotherapy, with rapid and deep tumor regression in a substantial proportion of patients. (Funded by Bristol-Myers Squibb and Ono Pharmaceutical; ClinicalTrials.gov number, NCT01024231.).
Asunto(s)
Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Antígeno CTLA-4/antagonistas & inhibidores , Melanoma/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Antígeno CTLA-4/inmunología , Femenino , Humanos , Infusiones Intravenosas , Ipilimumab , Masculino , Melanoma/patología , Persona de Mediana Edad , Estadificación de Neoplasias , Nivolumab , Neoplasias Cutáneas/patología , Adulto JovenRESUMEN
IMPORTANCE: The programmed death 1 (PD-1) pathway limits immune responses to melanoma and can be blocked with the humanized anti-PD-1 monoclonal antibody pembrolizumab. OBJECTIVE: To characterize the association of pembrolizumab with tumor response and overall survival among patients with advanced melanoma. DESIGN, SETTINGS, AND PARTICIPANTS: Open-label, multicohort, phase 1b clinical trials (enrollment, December 2011-September 2013). Median duration of follow-up was 21 months. The study was performed in academic medical centers in Australia, Canada, France, and the United States. Eligible patients were aged 18 years and older and had advanced or metastatic melanoma. Data were pooled from 655 enrolled patients (135 from a nonrandomized cohort [n = 87 ipilimumab naive; n = 48 ipilimumab treated] and 520 from randomized cohorts [n = 226 ipilimumab naive; n = 294 ipilimumab treated]). Cutoff dates were April 18, 2014, for safety analyses and October 18, 2014, for efficacy analyses. EXPOSURES: Pembrolizumab 10 mg/kg every 2 weeks, 10 mg/kg every 3 weeks, or 2 mg/kg every 3 weeks continued until disease progression, intolerable toxicity, or investigator decision. MAIN OUTCOMES AND MEASURES: The primary end point was confirmed objective response rate (best overall response of complete response or partial response) in patients with measurable disease at baseline per independent central review. Secondary end points included toxicity, duration of response, progression-free survival, and overall survival. RESULTS: Among the 655 patients (median [range] age, 61 [18-94] years; 405 [62%] men), 581 had measurable disease at baseline. An objective response was reported in 194 of 581 patients (33% [95% CI, 30%-37%]) and in 60 of 133 treatment-naive patients (45% [95% CI, 36% to 54%]). Overall, 74% (152/205) of responses were ongoing at the time of data cutoff; 44% (90/205) of patients had response duration for at least 1 year and 79% (162/205) had response duration for at least 6 months. Twelve-month progression-free survival rates were 35% (95% CI, 31%-39%) in the total population and 52% (95% CI, 43%-60%) among treatment-naive patients. Median overall survival in the total population was 23 months (95% CI, 20-29) with a 12-month survival rate of 66% (95% CI, 62%-69%) and a 24-month survival rate of 49% (95% CI, 44%-53%). In treatment-naive patients, median overall survival was 31 months (95% CI, 24 to not reached) with a 12-month survival rate of 73% (95% CI, 65%-79%) and a 24-month survival rate of 60% (95% CI, 51%-68%). Ninety-two of 655 patients (14%) experienced at least 1 treatment-related grade 3 or 4 adverse event (AE) and 27 of 655 (4%) patients discontinued treatment because of a treatment-related AE. Treatment-related serious AEs were reported in 59 patients (9%). There were no drug-related deaths. CONCLUSIONS AND RELEVANCE: Among patients with advanced melanoma, pembrolizumab administration was associated with an overall objective response rate of 33%, 12-month progression-free survival rate of 35%, and median overall survival of 23 months; grade 3 or 4 treatment-related AEs occurred in 14%. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01295827.
Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Antineoplásicos/uso terapéutico , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Anticuerpos Monoclonales/uso terapéutico , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Esquema de Medicación , Femenino , Humanos , Ipilimumab , Masculino , Melanoma/mortalidad , Melanoma/patología , Persona de Mediana Edad , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Tasa de Supervivencia , Resultado del Tratamiento , Adulto JovenRESUMEN
BACKGROUND: Patients with squamous non-small-cell lung cancer that is refractory to multiple treatments have poor outcomes. We assessed the activity of nivolumab, a fully human IgG4 PD-1 immune checkpoint inhibitor antibody, for patients with advanced, refractory, squamous non-small-cell lung cancer. METHODS: We did this phase 2, single-arm trial at 27 sites (academic, hospital, and private cancer centres) in France, Germany, Italy, and USA. Patients who had received two or more previous treatments received intravenous nivolumab (3 mg/kg) every 2 weeks until progression or unacceptable toxic effects. The primary endpoint was the proportion of patients with a confirmed objective response as assessed by an independent radiology review committee. We included all treated patients in the analyses. This study is registered with ClinicalTrials.gov, number NCT01721759. FINDINGS: Between Nov 16, 2012, and July 22, 2013, we enrolled and treated 117 patients. 17 (14·5%, 95% CI 8·7-22·2) of 117 patients had an objective response as assessed by an independent radiology review committee. Median time to response was 3·3 months (IQR 2·2-4·8), and median duration of response was not reached (95% CI 8·31-not applicable); 13 (77%) of 17 of responses were ongoing at the time of analysis. 30 (26%) of 117 patients had stable disease (median duration 6·0 months, 95% CI 4·7-10·9). 20 (17%) of 117 patients reported grade 3-4 treatment-related adverse events, including: fatigue (five [4%] of 117 patients), pneumonitis (four [3%]), and diarrhoea (three [3%]). There were two treatment-associated deaths caused by pneumonia and ischaemic stroke that occurred in patients with multiple comorbidities in the setting of progressive disease. INTERPRETATION: Nivolumab has clinically meaningful activity and a manageable safety profile in previously treated patients with advanced, refractory, squamous non-small cell lung cancer. These data support the assessment of nivolumab in randomised, controlled, phase 3 studies of first-line and second-line treatment. FUNDING: Bristol-Myers Squibb.
Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Antineoplásicos/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Neoplasias Pulmonares/tratamiento farmacológico , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anciano , Anticuerpos Monoclonales/administración & dosificación , Anticuerpos Monoclonales/efectos adversos , Antineoplásicos/administración & dosificación , Antineoplásicos/efectos adversos , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/mortalidad , Carcinoma de Pulmón de Células no Pequeñas/patología , Comorbilidad , Progresión de la Enfermedad , Supervivencia sin Enfermedad , Esquema de Medicación , Europa (Continente) , Femenino , Humanos , Infusiones Intravenosas , Estimación de Kaplan-Meier , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Nivolumab , Receptor de Muerte Celular Programada 1/metabolismo , Factores de Riesgo , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Resultado del Tratamiento , Estados UnidosRESUMEN
Neoantigen immunoediting drives immune checkpoint blockade efficacy, yet the molecular features of neoantigens and how neoantigen immunogenicity shapes treatment response remain poorly understood. To address these questions, 80 patients with non-small cell lung cancer were enrolled in the biomarker cohort of CheckMate 153 (CA209-153), which collected radiographic guided biopsy samples before treatment and during treatment with nivolumab. Early loss of mutations and neoantigens during therapy are both associated with clinical benefit. We examined 1,453 candidate neoantigens, including many of which that had reduced cancer cell fraction after treatment with nivolumab, and identified 196 neopeptides that were recognized by T cells. Mapping these neoantigens to clonal dynamics, evolutionary trajectories and clinical response revealed a strong selection against immunogenic neoantigen-harboring clones. We identified position-specific amino acid and physiochemical features related to immunogenicity and developed an immunogenicity score. Nivolumab-induced microenvironmental evolution in non-small cell lung cancer shared some similarities with melanoma, yet critical differences were apparent. This study provides unprecedented molecular portraits of neoantigen landscapes underlying nivolumab's mechanism of action.
RESUMEN
The need for solid clinical definitions of resistance to programmed death 1 or its ligand (PD-(L)1) inhibitors for clinical trial design was identified as a priority by the Society for Immunotherapy of Cancer (SITC). Broad consensus efforts have provided definitions for primary and secondary resistance and resistance after stopping therapy for both single-agent PD-(L)1 inhibitors and associated combinations. Validation of SITC's definitions is critical and requires field-wide data sharing and collaboration. Here, in this commentary, we detail current utility and incorporation of SITC's definitions and discuss the next steps both the society and the field must take to further advance immuno-oncology drug development.
Asunto(s)
Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Oncología MédicaRESUMEN
INTRODUCTION: We aimed to define a baseline radiomic signature associated with overall survival (OS) using baseline computed tomography (CT) images obtained from patients with NSCLC treated with nivolumab or chemotherapy. METHODS: The radiomic signature was developed in patients with NSCLC treated with nivolumab in CheckMate-017, -026, and -063. Nivolumab-treated patients were pooled and randomized to training, calibration, or validation sets using a 2:1:1 ratio. From baseline CT images, volume of tumor lesions was semiautomatically segmented, and 38 radiomic variables depicting tumor phenotype were extracted. Association between the radiomic signature and OS was assessed in the nivolumab-treated (validation set) and chemotherapy-treated (test set) patients in these studies. RESULTS: A baseline radiomic signature was identified using CT images obtained from 758 patients. The radiomic signature used a combination of imaging variables (spatial correlation, tumor volume in the liver, and tumor volume in the mediastinal lymph nodes) to output a continuous value, ranging from 0 to 1 (from most to least favorable estimated OS). Given a threshold of 0.55, the sensitivity and specificity of the radiomic signature for predicting 3-month OS were 86% and 77.8%, respectively. The signature was identified in the training set of patients treated with nivolumab and was significantly associated (p < 0.0001) with OS in patients treated with nivolumab or chemotherapy. CONCLUSIONS: The radiomic signature provides an early readout of the anticipated OS in patients with NSCLC treated with nivolumab or chemotherapy. This could provide important prognostic information and may support risk stratification in clinical trials.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Neoplasias Pulmonares/tratamiento farmacológico , Nivolumab/uso terapéutico , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Pronóstico , Tomografía Computarizada por Rayos X/métodos , Estudios RetrospectivosRESUMEN
Treatment with immune checkpoint blockade (ICB) often fails to elicit durable antitumor immunity. Recent studies suggest that ICB does not restore potency to terminally dysfunctional T cells, but instead drives proliferation and differentiation of self-renewing progenitor T cells into fresh, effector-like T cells. Antitumor immunity catalyzed by ICB is characterized by mobilization of antitumor T cells in systemic circulation and tumor. To address whether abundance of self-renewing T cells in blood is associated with immunotherapy response, we used flow cytometry of peripheral blood from a cohort of patients with metastatic non-small cell lung cancer (NSCLC) treated with ICB. At baseline, expression of T-cell factor 1 (TCF1), a marker of self-renewing T cells, was detected at higher frequency in effector-memory (CCR7-) CD8+ T cells from patients who experienced durable clinical benefit compared to those with primary resistance to ICB. On-treatment blood samples from patients benefiting from ICB also exhibited a greater frequency of TCF1+CCR7-CD8+ T cells and higher proportions of TCF1 expression in treatment-expanded PD-1+CCR7-CD8+ T cells. The observed correlation of TCF1 frequency in CCR7-CD8+ T cells and response to ICB suggests that broader examination of self-renewing T-cell abundance in blood will determine its potential as a noninvasive, predictive biomarker of response and resistance to immunotherapy.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Receptores CCR7 , Linfocitos T CD8-positivos , InmunoterapiaRESUMEN
PD-1 is an inhibitory receptor in T cells, and antibodies that block its interaction with ligands augment anti-tumor immune responses. The clinical potential of these agents is limited by the fact that half of all patients develop immune-related adverse events (irAEs). To generate insights into the cellular changes that occur during anti-PD-1 treatment, we performed single-cell RNA sequencing of circulating T cells collected from patients with cancer. Using the K-nearest-neighbor-based network graph-drawing layout, we show the involvement of distinctive genes and subpopulations of T cells. We identify that at baseline, patients with arthritis have fewer CD8 TCM cells, patients with pneumonitis have more CD4 TH2 cells, and patients with thyroiditis have more CD4 TH17 cells when compared with patients who do not develop irAEs. These data support the hypothesis that different populations of T cells are associated with different irAEs and that characterization of these cells' pre-treatment has the potential to serve as a toxicity-specific predictive biomarker.
Asunto(s)
Neoplasias , Linfocitos T , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Inmunidad , Inmunoterapia/efectos adversos , Análisis de Secuencia de ARNRESUMEN
INTRODUCTION: NEPTUNE, a phase 3, open-label study, evaluated first-line durvalumab plus tremelimumab versus chemotherapy in metastatic NSCLC (mNSCLC). METHODS: Eligible patients with EGFR and ALK wild-type mNSCLC were randomized (1:1) to first-line durvalumab (20 mg/kg every 4 weeks until progression) plus tremelimumab (1 mg/kg every 4 weeks for up to four doses) or standard chemotherapy. Randomization was stratified by tumor programmed death-ligand 1 expression (≥25% versus <25%), tumor histologic type, and smoking history. The amended primary end point was overall survival (OS) in patients with blood tumor mutational burden (bTMB) greater than or equal to 20 mutations per megabase (mut/Mb). Secondary end points included progression-free survival (PFS) in patients with bTMB greater than or equal to 20 mut/Mb and safety and tolerability in all treated patients. RESULTS: As of June 24, 2019, 823 patients were randomized (intention-to-treat [ITT]); 512 (62%) were bTMB-evaluable, with 129 of 512 (25%) having bTMB greater than or equal to 20 mut/Mb (durvalumab plus tremelimumab [n = 69]; chemotherapy [n = 60]). Baseline characteristics were balanced in the intention-to-treat. Among patients with bTMB greater than or equal to 20 mut/Mb, OS improvement with durvalumab plus tremelimumab versus chemotherapy did not reach statistical significance (hazard ratio 0.71 [95% confidence interval: 0.49-1.05; p = 0.081]; median OS, 11.7 versus 9.1 months); the hazard ratio for PFS was 0.77 (95% confidence interval, 0.51-1.15; median PFS, 4.2 versus 5.1 months). In the overall safety population, incidence of grade 3 or 4 treatment-related adverse events was 20.7% (durvalumab plus tremelimumab) and 33.6% (chemotherapy). CONCLUSIONS: NEPTUNE did not meet its primary end point of improved OS with durvalumab plus tremelimumab versus chemotherapy in patients with mNSCLC and bTMB greater than or equal to 20 mut/Mb. Despite the amended study design, with a resultant small primary analysis population, therapeutic activity was aligned with expectations based on mechanistic biology and previous studies.