Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 30(10): 27875-27883, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394814

RESUMEN

Aerated concrete (AAC) or lightweight concrete is primarily used for non-load bearing structures in construction work. Generally, it is produced with cement as a main binding ingredient, and the production of cement is blamed to contribute 7 to 8% of CO2 emission in the environment. In addition, the dumping of industrial wastes is also a great environmental concern. This research is an attempt to produce low-cost and sustainable aerated concrete utilizing silica fume and fly ash as partial substitution to cement without compromising the fundamental properties of aerated concrete. The current study was divided into two phases: in the first phase, the silica fume was substituted up to 20% with a variation of 5% in each mix. In the second phase, the fly ash was replaced with cement in three variations, i.e., 10%, 20%, and 30% containing an optimum proportion of silica fume obtained in phase 1. The aluminum powder was added at 0.4% by weight of binder to introduce aeration in concrete. Before testing, samples of aerated concrete were cured with steam in an autoclaving machine for 9 h at a pressure and temperature of 1.5 bars and 127 °C respectively and oven-dried at a temperature of 105 °C for 24 h after steam curing. From the experimental results, the highest compressive and split tensile strength of AAC was recorded when 15% of the cement was replaced with silica fume and 30% of the cement was replaced with fly ash combined. At this proportion the least density was also recorded which showed the lightweight of AAC without compromising the strength characteristics. In addition, the reduction of 42.64% and 32.4% of embodied carbon and cost was observed respectively.


Asunto(s)
Ceniza del Carbón , Dióxido de Silicio , Ceniza del Carbón/química , Carbono , Vapor , Materiales de Construcción
2.
Environ Sci Pollut Res Int ; 29(1): 1210-1222, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34350574

RESUMEN

The production of cement releases an enormous amount of CO2 into the environment. Besides, industrial wastes like silica fume and fly ash need effective utilization to reduce their impacts on the environment. This research aims to explore the influence of silica fume (SF) and fly ash (FA) individually and combine them as binary cementitious material (BCM) on the hardened properties and embodied carbon of roller compacted concrete (RCC). A total of ten mixes were prepared with 1:2:4 mix ratio at the different water-cement ratios to keep the zero slump of roller compacted concrete. However, the replacement proportions for SF were 5%-15%, and FA were 5%-15% by the weight of cement individually and combine in roller compacted concrete for determining the hardened properties and embodied carbon. In this regard, several numbers of concrete specimens (cubes and cylinders) were cast and cured for 7 and 28 days correspondingly. It was observed that the compressive strength of RCC is boosted by 33.6 MPa and 30.6 MPa while using 10% of cement replaced with SF and FA individually at 28 days, respectively. Similarly, the splitting tensile strength of RCC is enhanced by 3.5 MPa at 10% cement replaced with SF and FA on 28 days, respectively. The compressive and splitting tensile strength of RCC is increased by 34.2 MPa and 3.8 MPa at SF7.5FA7.5 as BCM after 28 days consistently. In addition, the water absorption of RCC decreased while using SF and FA as cementitious material individually and together at 28 days. Besides, the embodied carbon of RCC decreased with increasing the replacement level of SF and FA by the mass of cement individually and combined.


Asunto(s)
Ceniza del Carbón , Materiales de Construcción , Carbono , Fuerza Compresiva , Dióxido de Silicio
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA