Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Small ; 11(37): 4900-9, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26179212

RESUMEN

The preparation of ultrasmall and rigid platforms (USRPs) that are covalently coupled to macrocycle-based, calcium-responsive/smart contrast agents (SCAs), and the initial in vitro and in vivo validation of the resulting nanosized probes (SCA-USRPs) by means of magnetic resonance imaging (MRI) is reported. The synthetic procedure is robust, allowing preparation of the SCA-USRPs on a multigram scale. The resulting platforms display the desired MRI activity­i.e., longitudinal relaxivity increases almost twice at 7 T magnetic field strength upon saturation with Ca(2+). Cell viability is probed with the MTT assay using HEK-293 cells, which show good tolerance for lower contrast agent concentrations over longer periods of time. On intravenous administration of SCA-USRPs in living mice, MRI studies indicate their rapid accumulation in the renal pelvis and parenchyma. Importantly, the MRI signal increases in both kidney compartments when CaCl2 is also administrated. Laser-induced breakdown spectroscopy experiments confirm accumulation of SCA-USRPs in the renal cortex. To the best of our knowledge, these are the first studies which demonstrate calcium-sensitive MRI signal changes in vivo. Continuing contrast agent and MRI protocol optimizations should lead to wider application of these responsive probes and development of superior functional methods for monitoring calcium-dependent physiological and pathological processes in a dynamic manner.


Asunto(s)
Calcio , Medios de Contraste/química , Imagen por Resonancia Magnética/métodos , Nanopartículas/química , Tamaño de la Partícula , Animales , Supervivencia Celular/efectos de los fármacos , Dispersión Dinámica de Luz , Femenino , Células HEK293 , Humanos , Inyecciones Intravenosas , Rayos Láser , Ligandos , Ratones Endogámicos BALB C , Nanopartículas/toxicidad , Relación Señal-Ruido , Análisis Espectral , Volumetría , Pruebas de Toxicidad
2.
NMR Biomed ; 28(6): 738-46, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25921808

RESUMEN

The development of new non-invasive diagnostic and therapeutic approaches is of paramount importance in order to improve the outcome of patients with glioblastoma (GBM). In this work we investigated a completely non-invasive pre-clinical protocol to effectively target and detect brain tumors through the orotracheal route, using ultra-small nanoparticles (USRPs) and MRI. A mouse model of GBM was developed. In vivo MRI acquisitions were performed before and after intravenous or orotracheal administration of the nanoparticles to identify and segment the tumor. The accumulation of the nanoparticles in neoplastic lesions was assessed ex vivo through fluorescence microscopy. Before the administration of contrast agents, MR images allowed the identification of the presence of abnormal brain tissue in 73% of animals. After orotracheal or intravenous administration of USRPs, in all the mice an excellent co-localization of the position of the tumor with MRI and histology was observed. The elimination time of the USRPs from the tumor after the orotracheal administration was approximately 70% longer compared with intravenous injection. MRI and USRPs were shown to be powerful imaging tools able to detect, quantify and longitudinally monitor the development of GBMs. The absence of ionizing radiation and high resolution of MRI, along with the complete non-invasiveness and good reproducibility of the proposed protocol, make this technique potentially translatable to humans. To our knowledge, this is the first time that the advantages of a needle-free orotracheal administration route have been demonstrated for the investigation of the pathomorphological changes due to GBMs.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioblastoma/metabolismo , Glioblastoma/patología , Compuestos Heterocíclicos/farmacocinética , Imagen por Resonancia Magnética/métodos , Compuestos Organometálicos/farmacocinética , Administración Oral , Animales , Línea Celular Tumoral , Medios de Contraste/administración & dosificación , Femenino , Compuestos Heterocíclicos/administración & dosificación , Aumento de la Imagen/métodos , Tasa de Depuración Metabólica , Ratones , Ratones Desnudos , Nanopartículas , Compuestos Organometálicos/administración & dosificación , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Distribución Tisular
3.
Nanomedicine ; 10(5): 901-4, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24657833

RESUMEN

The work aimed at developing a MRI-guided protocol for the visualization of the release of material entrapped in liposomes stimulated by the local application of pulsed low-intensity non-focused ultrasound (pLINFU). The task was achieved by formulating liposomes filled up with the clinically approved paramagnetic agent gadoteridol, because the release of the agent from the nanovesicles is accompanied by a significant MRI signal enhancement. The protocol was validated in vivo on mice-bearing subcutaneous syngeneic B16 melanoma and i.v. injected with the paramagnetic liposomes. Upon exposing tumor to pLINFU (3MHz, insonation time 2min, duty cycle 50%) few minutes after liposomes injection, a signal enhancement of ca. 35% was detected. The effective release of the agent was confirmed by the strong enhancement measured in kidneys calyx and bladder due to the rapid renal excretion of the agent released in the tumor. FROM THE CLINICAL EDITOR: In this paper, a pulsed low-intensity non-focused ultrasound-based technique was used to release a paramagnetic MRI contrast agent from liposomes, demonstrating the feasibility of this triggered release system in a mouse melanoma model for future research applications.


Asunto(s)
Medios de Contraste/química , Liposomas/química , Imagen por Resonancia Magnética/métodos
4.
Diagn Interv Imaging ; 102(10): 641-648, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34099436

RESUMEN

PURPOSE: To evaluate the potential differences in non-target embolization and vessel microsphere filling of a reflux-control microcatheter (RCM) compared to a standard end-hole microcatheter (SEHM) in a swine model. MATERIALS AND METHODS: Radiopaque microspheres were injected with both RCM and SEHM (2.4-Fr and 2.7-Fr) in the kidneys of a preclinical swine model. Transarterial renal embolization procedures with RCM or SEHM were performed in both kidneys of 14 pigs. Renal arteries were selectively embolized with an automated injection protocol of radio-opaque microspheres. Ex-vivo X-ray microtomography images of the kidneys were utilized to evaluate the embolization by quantification of the deposition of injected microspheres in the target vs. the non-target area of injection. X-ray microtomography images were blindly analyzed by five interventional radiologists. The degree of vessel filling and the non-target embolization were quantified using a scale from 1 to 5 for each parameter. An analysis of variance was used to compare the paired scores. RESULTS: Total volumes of radio-opaque microspheres injected were similar for RCM (11.5±3.6 [SD] mL; range: 6-17mL) and SEHM (10.6±5.2 [SD] mL; range: 4-19mL) (P=0.38). The voxels enhanced ratio in the target (T) vs. non-target (NT) areas was greater with RCM (T=98.3% vs. NT=1.7%) than with SEHM (T=89% vs. NT=11%) but the difference was not significant (P=0.30). The total score blindly given by the five interventional radiologists was significantly different between RCM (12.3±2.1 [SD]; range: 6-15) and the standard catheter (11.3±2.5 [SD]; range: 4-15) (P=0.0073), with a significant decrease of non-target embolization for RCM (3.8±1.3 [SD]; range: 3.5-4.2) compared to SEHM (3.2±1.5 [SD]; range: 2.9-3.5) (P=0.014). CONCLUSION: In an animal model, RCM microcatheters reduce the risk of non-target embolization from 11% to 1.7%, increasing the delivery of microspheres of 98% to the target vessels, compared to SEHM microcatheters.


Asunto(s)
Embolización Terapéutica , Animales , Catéteres , Riñón , Microesferas , Arteria Renal/diagnóstico por imagen , Porcinos
5.
Front Cell Neurosci ; 13: 89, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30941014

RESUMEN

The dynamic in vivo profiling of lactate is of uppermost importance in both neuroenergetics and neuroprotection fields, considering its central suspected role as a metabolic and signaling molecule. For this purpose, we implemented proton magnetic resonance spectroscopy (1H-MRS) directly on brain microdialysate to monitor online the fluctuation of lactate contents during neuronal stimulation. Brain activation was obtained by right whisker stimulation of rats, which leads to the activation of the left barrel cortex area in which the microdialysis probe was implanted. The experimental protocol relies on the use of dedicated and sensitive home-made NMR microcoil able to perform lactate NMR profiling at submillimolar concentration. The MRS measurements of extracellular lactate concentration were performed inside a pre-clinical MRI scanner allowing simultaneous visualization of the correct location of the microprobe by MRI and detection of metabolites contained in the microdialysis by MRS. A 40% increase in lactate concentration was measured during whisker stimulation in the corresponding barrel cortex. This combination of microdialysis with online MRS/MRI provides a new approach to follow in vivo lactate fluctuations, and can be further implemented in physio-pathological conditions to get new insights on the role of lactate in brain metabolism and signaling.

6.
Sci Rep ; 6: 36080, 2016 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-27811972

RESUMEN

In order to study metabolic processes in animal models of diseases and in patients, microdialysis probes have evolved as powerful tools that are minimally invasive. However, analyses of microdialysate, performed remotely, do not provide real-time monitoring of microdialysate composition. Microdialysate solutions can theoretically be analyzed online inside a preclicinal or clinical MRI scanner using MRS techniques. Due to low NMR sensitivity, acquisitions of real-time NMR spectra on very small solution volumes (µL) with low metabolite concentrations (mM range) represent a major issue. To address this challenge we introduce the approach of combining a microdialysis probe with a custom-built magnetic resonance microprobe that allows for online metabolic analysis (1H and 13C) with high sensitivity under continuous flow conditions. This system is mounted inside an MRI scanner and allows performing simultaneously MRI experiments and rapid MRS metabolic analysis of the microdialysate. The feasibility of this approach is demonstrated by analyzing extracellular brain cancer cells (glioma) in vitro and brain metabolites in an animal model in vivo. We expect that our approach is readily translatable into clinical settings and can be used for a better and precise understanding of diseases linked to metabolic dysfunction.


Asunto(s)
Espectroscopía de Resonancia Magnética/métodos , Microdiálisis/métodos , Animales , Encéfalo/metabolismo , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Diseño de Equipo , Femenino , Glioblastoma/metabolismo , Humanos , Imagen por Resonancia Magnética/instrumentación , Espectroscopía de Resonancia Magnética/instrumentación , Microdiálisis/instrumentación , Sistemas en Línea , Ratas , Ratas Wistar
7.
Mol Imaging Biol ; 15(3): 307-15, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23179092

RESUMEN

PURPOSE: This study is aimed at demonstrating the in vivo potential of Gd(III)-loaded glucan particles (Gd-GPs) as magnetic resonance imaging (MRI)-positive agents for labeling and tracking phagocytic cells. PROCEDURE: GPs were obtained from Saccharomyces cerevisae and loaded with the water-insoluble complex Gd-DOTAMA(C18)2. The uptake kinetics of Gd-GPs by murine macrophages was studied in vitro and the internalization mechanism was assessed by competition assays. The in vivo performance of Gd-GPs was tested at 7.05 T on a mouse model of acute liver inflammation. RESULTS: The minimum number of Gd-GPs-labeled J774.A1 macrophages detected in vitro by MRI was ca. 300 cells/µl of agar, which is the lowest number ever reported for cells labeled with a positive T1 agent. Intravenous injection of macrophages labeled with Gd-GPs in a mouse model of liver inflammation enabled the MRI visualization of the cellular infiltration in the diseased area. CONCLUSIONS: Gd-GPs represent a promising platform for tracking macrophages by MRI as a T1 alternative to the golden standard T2-based iron oxide particles.


Asunto(s)
Rastreo Celular/métodos , Compuestos Férricos , Gadolinio , Glucanos , Macrófagos/metabolismo , Imagen por Resonancia Magnética/métodos , Coloración y Etiquetado , Animales , Línea Celular Tumoral , Endocitosis , Fluorescencia , Compuestos Heterocíclicos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Confocal , Compuestos Organometálicos , Ratas , Saccharomyces cerevisiae , Solubilidad , Bazo/metabolismo , Agua/química
8.
Contrast Media Mol Imaging ; 7(2): 175-84, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22434630

RESUMEN

Two novel Gd-based contrast agents (CAs) for the molecular imaging of matrix metalloproteinases (MMPs) were synthetized and characterized in vitro and in vivo. These probes were based on the PLG*LWAR peptide sequence, known to be hydrolyzed between Gly and Leu by a broad panel of MMPs. A Gd-DOTA chelate was conjugated to the N-terminal position through an amide bond, either directly to proline (compd Gd-K11) or through a hydrophilic spacer (compd Gd-K11N). Both CA were made strongly amphiphilic by conjugating an alkyl chain at the C-terminus of the peptide sequence. Gd-K11 and Gd-K11N have a good affinity for ß-cyclodextrins (K(D) 310 and 670 µ m respectively) and for serum albumin (K(D) 350 and 90 µ m respectively), and can be efficiently cleaved in vitro at the expected site by MMP-2 and MMP-12. Upon MMP-dependent cleavage, the CAs lose the C-terminal tetrapeptide and the alkyl chain, thus undergoing to an amphiphilic-to-hydrophilic transformation that is expected to alter tissue pharmacokinetics. To prove this, Gd-K11 was systemically administered to mice bearing a subcutaneous B16.F10 melanoma, either pre-treated or not with the broad spectrum MMP inhibitor GM6001 (Ilomastat). The washout of the Gd-contrast enhancement in MR images was significantly faster for untreated subjects (displaying MMP activity) with respect to treated ones (MMP activity inhibited). The washout kinetics of Gd-contrast enhancement from the tumor microenvironment could be then interpreted in terms of the local activity of MMPs.


Asunto(s)
Gadolinio , Metaloproteinasas de la Matriz/metabolismo , Imagen Molecular/métodos , Sondas Moleculares/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Modelos Animales de Enfermedad , Gadolinio/química , Espectroscopía de Resonancia Magnética , Masculino , Espectrometría de Masas , Melanoma/enzimología , Melanoma/patología , Ratones , Ratones Endogámicos C57BL , Técnicas de Síntesis en Fase Sólida
9.
Chem Commun (Camb) ; 47(38): 10635-7, 2011 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-21881668

RESUMEN

This communication demonstrates that yeast cell wall particles (YCWPs) are a promising class of nature-inspired biocompatible microcarriers for the delivery of amphipathic/lipophilic imaging reporters. When a paramagnetic MRI agent is loaded, the longitudinal relaxivity per particle at 0.5 T is the highest ever reported for Gd-based systems.


Asunto(s)
Pared Celular/química , Medios de Contraste/química , Saccharomyces cerevisiae/metabolismo , Animales , Materiales Biocompatibles/química , Portadores de Fármacos/química , Gadolinio/química , Imagen por Resonancia Magnética , Magnetismo , Melanoma Experimental/diagnóstico por imagen , Ratones , Cintigrafía , Rodaminas/química , Saccharomyces cerevisiae/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA