Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Eur J Neurosci ; 56(5): 4505-4513, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35848658

RESUMEN

The antisecretory factor (AF) is an endogenous protein that counteracts intestinal hypersecretion and various inflammation conditions in vivo. It has been detected in many mammalian tissues and plasma, but its mechanisms of action are largely unknown. To study the pharmacological action of the AF on different GABAA receptor populations in cerebellar granule cells, we took advantage of the two-photon uncaging method as this technique allows to stimulate the cell locally in well-identified plasma membrane parts. We compared the electrophysiological response evoked by releasing a caged GABA compound on the soma, the axon initial segment and neurites before and after administering AF-16, a 16 amino acids long peptide obtained from the amino-terminal end of the AF protein. After the treatment with AF-16, we observed peak current increases of varying magnitude depending on the neuronal region. Thus, studying the effects of furosemide and AF-16 on the electrophysiological behaviour of cerebellar granules, we suggest that GABAA receptors, containing the α6 subunit, may be specifically involved in the increase of the peak current by AF, and different receptor subtype distribution may be responsible for differences in this increase on the cell.


Asunto(s)
Neuropéptidos , Receptores de GABA-A , Animales , Cerebelo/fisiología , Mamíferos/metabolismo , Neuronas/fisiología , Neuropéptidos/metabolismo , Ratas , Receptores de GABA-A/metabolismo , Ácido gamma-Aminobutírico/metabolismo , Ácido gamma-Aminobutírico/farmacología
2.
Pharmacol Res ; 113(Pt A): 500-514, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27667770

RESUMEN

We tested the efficacy of novel cyclooxygenase 2 (COX-2) inhibitors in counteracting glia-driven neuroinflammation induced by the amyloidogenic prion protein fragment PrP90-231 or lipopolysaccharide (LPS). In search for molecules with higher efficacy than celecoxib, we focused our study on its 2,3-diaryl-1,3-thiazolidin-4-one analogues. As experimental models, we used the immortalized microglial cell line N9, rat purified microglial primary cultures, and mixed cultures of astrocytes and microglia. Microglia activation in response to PrP90-231 or LPS was characterized by growth arrest, morphology changes and the production of reactive oxygen species (ROS). Moreover, PrP90-231 treatment caused the overexpression of the inducible nitric oxide synthase (iNOS) and COX-2, with the consequent nitric oxide (NO), and prostaglandin E2 (PGE2) accumulation. These effects were challenged by different celecoxib analogues, among which Q22 (3-[4-(sulfamoyl)phenyl]-2-(4-tolyl)thiazolidin-4-one) inhibited microglia activation more efficiently than celecoxib, lowering both iNOS and COX-2 activity and reducing ROS release. During neurodegenerative diseases, neuroinflammation induced by amyloidogenic peptides causes the activation of both astrocytes and microglia with these cell populations mutually regulating each other. Thus the effects of PrP90-231 and LPS were also studied on mixed glial cultures containing astrocytes and microglia. PrP90-231 treatment elicited different responses in the co-cultures induced astrocyte proliferation and microglia growth arrest, resulting in a differential ability to release proinflammatory molecules with the production of NO and ROS mainly attributable on microglia, while COX-2 expression was induced also in astrocytes. Q22 effects on both NO and PGE2 secretion were more significant in the mixed glial cultures than in purified microglia, demonstrating Q22 ability to revert the functional interaction between astrocytes and microglia. These results demonstrate that Q22 is a powerful drug able to revert glial neuroinflammatory responses and might represent a lead to explore the chemical space around celecoxib frameworks to design even more effective agents, paving the way to novel approaches to contrast the neuroinflammation-dependent toxicity.


Asunto(s)
Celecoxib/farmacología , Dinoprostona/metabolismo , Inflamación/tratamiento farmacológico , Lipopolisacáridos/farmacología , Neuroglía/efectos de los fármacos , Óxido Nítrico/metabolismo , Proteínas Priónicas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Ciclooxigenasa 2/metabolismo , Inflamación/metabolismo , Ratones , Microglía/efectos de los fármacos , Microglía/metabolismo , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Neuroglía/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ratas , Ratas Sprague-Dawley
3.
Bioorg Med Chem Lett ; 26(21): 5284-5289, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27720293

RESUMEN

A focused N-substituted 3-(2-piperazin-1-yl-2-oxoethyl)-2-(pyridin-2-yl)iso-indolin-1-ones small library was synthesized for modulation of GABA-A receptor function and compared to Zopiclone for the ability to increase GABA-activated chloride currents. All compounds were tested for their effects on GABA-activated chloride currents in rat cerebellar granule cells by use of the whole-cell patch clamp technique. Electrophysiological studies on cultured cerebellar granule cells revealed 3-[2-(4-methylpiperazin-1-yl)-2-oxoethyl]-2-(5-nitropyridin-2-yl)iso-indolin-1-one (Id) as a partial agonist displaying 34% increase of the 10µM GABA evoked peak chloride currents, antagonized by flumazenil. Moreover, a second group of compounds, with bulky functional groups at N-4 position of piperazine, have shown inverse agonist effects. The simple synthetic procedure and the possibility of modulating the efficacy of this class of ligands through additional structural modifications pave the way for further development of new molecules as a novel class of compounds able to interfere with benzodiazepine receptors.


Asunto(s)
Cerebelo/efectos de los fármacos , Canales de Cloruro/efectos de los fármacos , Gránulos Citoplasmáticos/efectos de los fármacos , Isoindoles/farmacología , Ácido gamma-Aminobutírico/farmacología , Animales , Células Cultivadas , Cerebelo/citología , Isoindoles/química , Técnicas de Placa-Clamp , Ratas
4.
Biochim Biophys Acta ; 1833(12): 3155-3165, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24035922

RESUMEN

This work aims at elucidating the relation between morphological and physicochemical properties of different ataxin-3 (ATX3) aggregates and their cytotoxicity. We investigated a non-pathological ATX3 form (ATX3Q24), a pathological expanded form (ATX3Q55), and an ATX3 variant truncated at residue 291 lacking the polyQ expansion (ATX3/291Δ). Solubility, morphology and hydrophobic exposure of oligomeric aggregates were characterized. Then we monitored the changes in the intracellular Ca(2+) levels and the abnormal Ca(2+) signaling resulting from aggregate interaction with cultured rat cerebellar granule cells. ATX3Q55, ATX3/291Δ and, to a lesser extent, ATX3Q24 oligomers displayed similar morphological and physicochemical features and induced qualitatively comparable time-dependent intracellular Ca(2+) responses. However, only the pre-fibrillar aggregates of expanded ATX3 (the only variant which forms bundles of mature fibrils) triggered a characteristic Ca(2+) response at a later stage that correlated with a larger hydrophobic exposure relative to the two other variants. Cell interaction with early oligomers involved glutamatergic receptors, voltage-gated channels and monosialotetrahexosylganglioside (GM1)-rich membrane domains, whereas cell interaction with more aged ATX3Q55 pre-fibrillar aggregates resulted in membrane disassembly by a mechanism involving only GM1-rich areas. Exposure to ATX3Q55 and ATX3/291Δ aggregates resulted in cell apoptosis, while ATX3Q24 was substantially innocuous. Our findings provide insight into the mechanisms of ATX3 aggregation, aggregate cytotoxicity and calcium level modifications in exposed cerebellar cells.


Asunto(s)
Amiloide/toxicidad , Calcio/metabolismo , Cerebelo/citología , Espacio Intracelular/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/toxicidad , Animales , Apoptosis/efectos de los fármacos , Canales de Calcio/metabolismo , Membrana Celular/metabolismo , Gangliósido G(M1)/farmacología , Microscopía de Fuerza Atómica , Unión Proteica/efectos de los fármacos , Estructura Cuaternaria de Proteína , Ratas , Ratas Sprague-Dawley , Receptores AMPA/metabolismo , Espectrometría de Fluorescencia , Factores de Tiempo
5.
Mol Pharmacol ; 83(1): 142-56, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23066092

RESUMEN

Previous studies have demonstrated that the knockdown or knockout of the three Na(+)/Ca(2+) exchanger (NCX) isoforms, NCX1, NCX2, and NCX3, worsens ischemic brain damage. This suggests that the activation of these antiporters exerts a neuroprotective action against stroke damage. However, drugs able to increase the activity of NCXs are not yet available. We have here succeeded in synthesizing a new compound, named neurounina-1 (7-nitro-5-phenyl-1-(pyrrolidin-1-ylmethyl)-1H-benzo[e][1,4]diazepin-2(3H)-one), provided with an high lipophilicity index and able to increase NCX activity. Ca(2+) radiotracer, Fura-2 microfluorimetry, and patch-clamp techniques revealed that neurounina-1 stimulated NCX1 and NCX2 activities with an EC(50) in the picomolar to low nanomolar range, whereas it did not affect NCX3 activity. Furthermore, by using chimera strategy and site-directed mutagenesis, three specific molecular determinants of NCX1 responsible for neurounina-1 activity were identified in the α-repeats. Interestingly, NCX3 became responsive to neurounina-1 when both α-repeats were replaced with the corresponding regions of NCX1. In vitro studies showed that 10 nM neurounina-1 reduced cell death of primary cortical neurons exposed to oxygen-glucose deprivation followed by reoxygenation. Moreover, in vitro, neurounina-1 also reduced γ-aminobutyric acid (GABA) release, enhanced GABA(A) currents, and inhibited both glutamate release and N-methyl-d-aspartate receptors. More important, neurounina-1 proved to have a wide therapeutic window in vivo. Indeed, when administered at doses of 0.003 to 30 µg/kg i.p., it was able to reduce the infarct volume of mice subjected to transient middle cerebral artery occlusion even up to 3 to 5 hours after stroke onset. Collectively, the present study shows that neurounina-1 exerts a remarkable neuroprotective effect during stroke and increases NCX1 and NCX2 activities.


Asunto(s)
Benzodiazepinonas/farmacología , Fármacos Neuroprotectores/farmacología , Pirrolidinas/farmacología , Intercambiador de Sodio-Calcio/metabolismo , Accidente Cerebrovascular/prevención & control , Animales , Calcio/metabolismo , Muerte Celular/efectos de los fármacos , Células Cultivadas , Cricetinae , Perros , Flumazenil/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Ácido Glutámico/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mutación , Neuronas/efectos de los fármacos , Neuronas/patología , Técnicas de Placa-Clamp , Ratas , Receptores de GABA-A/fisiología , Receptores de N-Metil-D-Aspartato/agonistas , Intercambiador de Sodio-Calcio/genética , Accidente Cerebrovascular/etiología , Accidente Cerebrovascular/patología , Sinaptosomas/efectos de los fármacos , Sinaptosomas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
6.
Neurochem Res ; 2013 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-24122079

RESUMEN

GABAA receptor mediated inhibition plays an important role in modulating the input/output dynamics of cerebellum. A characteristic of cerebellar GABAA receptors is the presence in cerebellar granule cells of subunits such as α6 and δ which give insensitivity to classical benzodiazepines. In fact, cerebellar GABAA receptors have generally been considered a poor model for testing drugs which potentially are active at the benzodiazepine site. In this overview we show how rat cerebellar granule cells in culture may be a useful model for studying new benzodiazepine site agonists. This is based on the pharmacological separation of diazepam-sensitive α1 ß2/3 γ2 receptors from those which are diazepam-insensitive and contain the α6 subunit. This is achieved by utilizing furosemide/Zn2+ which block α6 containing and incomplete receptors.

7.
BMC Neurosci ; 13: 41, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22536786

RESUMEN

BACKGROUND: The discovery of the inherited disorders of creatine (Cr) synthesis and transport in the last few years disclosed the importance of blood Cr supply for the normal functioning of the brain. These putatively rare diseases share a common pathogenetic mechanism (the depletion of brain Cr) and similar phenotypes characterized by mental retardation, language disturbances, seizures and movement disorders. In the effort to improve our knowledge on the mechanisms regulating Cr pool inside the nervous tissue, Cr transport and synthesis and related gene transcripts were explored in primary cultures of rat cerebellar granule cells and astrocytes. METHODS: Cr uptake and synthesis were explored in vitro by incubating monotypic primary cultures of rat type I astrocytes and cerebellar granule cells with: a) D3-Creatine (D3Cr) and D3Cr plus ß-guanidinopropionate (GPA, an inhibitor of Cr transporter), and b) labelled precursors of Guanidinoacetate (GAA) and Cr (Arginine, Arg; Glycine, Gly). Intracellular D3Cr and labelled GAA and Cr were assessed by ESI-MS/MS. Creatine transporter (CT1), L-arginine:glycine amidinotransferase (AGAT), and S-adenosylmethionine:guanidinoacetate N-methyltransferase (GAMT) gene expression was assessed in the same cells by real time PCR. RESULTS: D3Cr signal was extremely high in cells incubated with this isotope (labelled/unlabelled Cr ratio reached about 10 and 122, respectively in cerebellar granule cells and astrocytes) and was reduced by GPA. Labelled Arg and Gly were taken up by the cells and incorporated in GAA, whose concentration paralleled that of these precursors both in the extracellular medium and inside the cells (astrocytes). In contrast, the increase of labelled Cr was relatively much more limited since labelled Cr after precursors' supplementation did not exceed 2,7% (cerebellar granule cells) and 21% (astrocytes) of unlabelled Cr. Finally, AGAT, GAMT and SLC6A8 were expressed in both kind of cells. CONCLUSIONS: Our results confirm that both neurons and astrocytes have the capability to synthesize and uptake Cr, and suggest that at least in vitro intracellular Cr can increase to a much greater extent through uptake than through de novo synthesis. Our results are compatible with the clinical observations that when the Cr transporter is defective, intracellular Cr is absent despite the brain should be able to synthesize it. Further research is needed to fully understand to what extent our results reflect the in vivo situation.


Asunto(s)
Astrocitos/metabolismo , Cerebelo/metabolismo , Creatina/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/citología , Cerebelo/citología , Guanidinoacetato N-Metiltransferasa/metabolismo , Neuronas/citología , Ratas , Ratas Wistar , S-Adenosilmetionina/metabolismo
8.
Biomol Concepts ; 13(1): 289-297, 2022 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-35675587

RESUMEN

The study of the GABAA receptor itself and its pharmacology is of paramount importance for shedding light on the role of this receptor in the central nervous system. Caged compounds have emerged as powerful tools to support research in this field, as they allow to control, in space and time, the release of neurotransmitters enabling, for example, to map receptors' distribution and dynamics. Here we focus on γ-aminobutyric acid (GABA)-caged compounds, particularly on a commercial complex called RuBi-GABA, which has high efficiency of uncaging upon irradiation at visible wavelengths. We characterized, by electrophysiological measurements, the effects of RuBi-GABA on GABAA receptors of rat cerebellar granule cells in vitro. In particular, we evaluated the effects of side products obtained after RuBi-GABA photolysis. For this purpose, we developed a procedure to separate the "RuBi-cage" from GABA after uncaging RuBi-GABA with a laser source; then, we compared electrophysiological measurements acquired with and without administering the RuBi-cage in the perfusing bath. In conclusion, to investigate the role of the "cage" molecules both near and far from the cell soma, we compared experiments performed changing the distance of the uncaging point from the cell.


Asunto(s)
Neuronas , Ácido gamma-Aminobutírico , Animales , Neuronas/fisiología , Ratas , Receptores de GABA-A/fisiología , Ácido gamma-Aminobutírico/farmacología
9.
Neurobiol Dis ; 41(2): 308-17, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20888417

RESUMEN

Alternative splicing is a central component of human brain complexity; nonetheless, its regulatory mechanisms are still largely unclear. In this work, we describe a novel non-coding (nc) RNA (named 17A) RNA polymerase (pol) III-dependent embedded in the human G-protein-coupled receptor 51 gene (GPR51, GABA B2 receptor). The stable expression of 17A in SHSY5Y neuroblastoma cells induces the synthesis of an alternative splicing isoform that abolish GABA B2 intracellular signaling (i.e., inhibition of cAMP accumulation and activation of K(+) channels). Indeed, 17A is expressed in human brain, and we report that it is upregulated in cerebral tissues derived from Alzheimer disease patients. We demonstrate that 17A expression in neuroblastoma cells enhances the secretion of amyloid ß peptide (Aß) and the Aß x-42/Αß x-40 peptide ratio and that its synthesis is induced in response to inflammatory stimuli. These data correlate, for the first time, the activity of a novel pol III-dependent ncRNA to alternative splicing events and, possibly, to neurodegeneration induced by abnormal GABA B function. We anticipate that further analysis of pol III-dependent regulation of alternative splicing will disclose novel regulatory pathways associated to brain physiology and/or pathology.


Asunto(s)
Empalme Alternativo/genética , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Mediadores de Inflamación/fisiología , ARN no Traducido/genética , Receptores de GABA-A/genética , Transducción de Señal/genética , Enfermedad de Alzheimer/metabolismo , Secuencia de Bases , Línea Celular Tumoral , Células HeLa , Humanos , Mediadores de Inflamación/metabolismo , Datos de Secuencia Molecular , ARN Polimerasa III/genética , ARN Polimerasa III/fisiología , ARN Largo no Codificante , ARN no Traducido/farmacología , ARN no Traducido/fisiología , Receptores de GABA-A/química , Receptores de GABA-A/fisiología , Regulación hacia Arriba/genética
10.
FASEB J ; 24(10): 4033-46, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20581224

RESUMEN

Neuroblastoma (NB) is a pediatric cancer characterized by remarkable cell heterogeneity within the tumor nodules. Here, we demonstrate that the synthesis of a pol III-transcribed noncoding (nc) RNA (NDM29) strongly restricts NB development by promoting cell differentiation, a drop of malignancy processes, and a dramatic reduction of the tumor initiating cell (TIC) fraction in the NB cell population. Notably, the overexpression of NDM29 also confers to malignant NB cells an unpredicted susceptibility to the effects of antiblastic drugs used in NB therapy. Altogether, these results suggest the induction of NDM29 expression as possible treatment to increase cancer cells vulnerability to therapeutics and the measure of its synthesis in NB explants as prognostic factor of this cancer type.


Asunto(s)
Elementos Alu , Diferenciación Celular/genética , Neuroblastoma/patología , Secuencia de Bases , Adhesión Celular , Ciclo Celular , Cartilla de ADN , Regulación hacia Abajo , Técnica del Anticuerpo Fluorescente , Humanos , Células Tumorales Cultivadas
11.
Sci Rep ; 10(1): 13380, 2020 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-32770032

RESUMEN

Ruthenium-bipyridinetriphenylphosphine-GABA (RuBi-GABA) is a caged compound that allows studying the neuronal transmission in a specific region of a neuron. The inhibitory neurotransmitter γ-aminobutyric acid (GABA) is bound to a caged group that blocks the interaction of the neurotransmitter with its receptor site. Following linear-one-photon (1P)-and non-linear-multi-photon-absorption of light, the covalent bond of the caged molecule is broken, and GABA is released. Such a controlled release in time and space allows investigating the interaction with its receptor in four dimensions (X,Y,Z,t). Taking advantage of this strategy, we succeeded in addressing the modulation of GABAA in rat cerebellar neurons by coupling the photoactivation process, by confocal or two-photon excitation microscopy, with the electrophysiological technique of the patch-clamp in the whole-cell configuration. Key parameters have been comprehensively investigated and correlated in a temporally and spatially confined way, namely: photoactivation laser power, time of exposure, and distance of the uncaging point from the cell of interest along the X, Y, Z spatial coordinates. The goal of studying specific biological events as a function of controlled physical parameters has been achieved.


Asunto(s)
Neuronas/metabolismo , Neuronas/fisiología , Neurotransmisores/metabolismo , Receptores de GABA-A/metabolismo , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Luz , Microscopía Confocal , Imagen Molecular/métodos , Técnicas de Placa-Clamp , Ratas Sprague-Dawley
12.
Neurotox Res ; 32(3): 381-397, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28540665

RESUMEN

Glia over-stimulation associates with amyloid deposition contributing to the progression of central nervous system neurodegenerative disorders. Here we analyze the molecular mechanisms mediating microglia-dependent neurotoxicity induced by prion protein (PrP)90-231, an amyloidogenic polypeptide corresponding to the protease-resistant portion of the pathological prion protein scrapie (PrPSc). PrP90-231 neurotoxicity is enhanced by the presence of microglia within neuronal culture, and associated to a rapid neuronal [Ca++] i increase. Indeed, while in "pure" cerebellar granule neuron cultures, PrP90-231 causes a delayed intracellular Ca++ entry mediated by the activation of NMDA receptors; when neuron and glia are co-cultured, a transient increase of [Ca++] i occurs within seconds after treatment in both granule neurons and glial cells, then followed by a delayed and sustained [Ca++] i raise, associated with the induction of the expression of inducible nitric oxide synthase and phagocytic NADPH oxidase. [Ca++] i fast increase in neurons is dependent on the activation of multiple pathways since it is not only inhibited by the blockade of voltage-gated channel activity and NMDA receptors but also prevented by the inhibition of nitric oxide and PGE2 release from glial cells. Thus, Ca++ homeostasis alteration, directly induced by PrP90-231 in cerebellar granule cells, requires the activation of NMDA receptors, but is greatly enhanced by soluble molecules released by activated glia. In glia-enriched cerebellar granule cultures, the activation of inducible nitric oxide (iNOS) and NADPH oxidase represents the main mechanism of toxicity since their pharmacological inhibition prevented PrP90-231 neurotoxicity, whereas NMDA blockade by D(-)-2-amino-5-phosphonopentanoic acid is ineffective; conversely, in pure cerebellar granule cultures, NMDA blockade but not iNOS inhibition strongly reduced PrP90-231 neurotoxicity. These data indicate that amyloidogenic peptides induce neurotoxic signals via both direct neuron interaction and glia activation through different mechanisms responsible of calcium homeostasis disruption in neurons and potentiating each other: the activation of excitotoxic pathways via NMDA receptors and the release of radical species that establish an oxidative milieu.


Asunto(s)
Cerebelo/efectos de los fármacos , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Fragmentos de Péptidos/toxicidad , Priones/toxicidad , Animales , Calcio/metabolismo , Canales de Calcio/metabolismo , Muerte Celular , Células Cultivadas , Cerebelo/metabolismo , Cerebelo/patología , Técnicas de Cocultivo , Espacio Intracelular/metabolismo , NADPH Oxidasas/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Neuronas/metabolismo , Neuronas/patología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/metabolismo , Fragmentos de Péptidos/metabolismo , Priones/metabolismo , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo
13.
Ann N Y Acad Sci ; 1090: 385-98, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17384283

RESUMEN

Stromal cell-derived factor-1 (SDF-1) is a chemokine of the CXC subfamily that exerts its effects via CXCR4, a G-protein-coupled receptor. CXCR4 is often expressed by tumor cells, and its activation causes tumor cell proliferation. Using GH4C1 cells, here we show that SDF-1 induced cell proliferation in a dose-dependent manner. Thus, we evaluated the intracellular signaling involved in this effect. SDF-1 increased cytosolic [Ca2+] and activated Pyk2, ERK1/2, and BKCa channels. To correlate these intracellular effectors with the proliferative activity of SDF-1, we inhibited their activity using BAPTA-AM (Ca2+ chelator), PD98059 (MEK inhibitor), salicylate (Pyk2 inhibitor), and TEA (K+ channel blocker). All these compounds reverted SDF-1-induced proliferation, suggesting the involvement of multiple intracellular pathways. To identify a possible crosstalk and a molecular ordering among these pathways, we tested these antagonists on SDF-1-dependent activation of ERK1/2, Pyk2, and BKCa channels. We report that the inhibition of [Ca2+]i increase or the blockade of BKCa channel activity did not affect ERK1/2 activation by SDF-1; Pyk2 activation was purely Ca2+-dependent, not involving ERK1/2 or BKCa channels; and BKCa channel activity was antagonized by Pyk2 but not by ERK1/2 inhibitors. These data suggest that SDF-1-dependent increase of [Ca2+]i activates Pyk2, which, in turn, regulates BKCa channel activity. Conversely, ERK1/2 activation is an independent phenomenon. In conclusion, we demonstrate that SDF-1 induces proliferation of GH4C1 cells, suggesting that the activation of CXCR4 may represent a novel regulatory mechanism for pituitary cell proliferation which may contribute to pituitary adenoma development.


Asunto(s)
Proliferación Celular , Quimiocinas CXC/fisiología , Quinasa 2 de Adhesión Focal/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Neoplasias Hipofisarias/patología , Adenoma/enzimología , Adenoma/metabolismo , Adenoma/patología , Calcio/metabolismo , Línea Celular , Quimiocina CXCL12 , Activación Enzimática , Proteínas de Unión al GTP/metabolismo , Humanos , Neoplasias Hipofisarias/enzimología , Neoplasias Hipofisarias/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
14.
J Mol Neurosci ; 60(4): 539-547, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27629561

RESUMEN

Herein, we tested in a model of generalized reflex epilepsy in mice different 1,4-benzodiazepines and 1,5-benzodiazepines with agonistic activity at the GABAA receptor population contributing to the peak component of the chloride current elicited by GABA in cerebellar granule cells (CGCs) in culture. The substances have all higher lipophilia than clobazam, an antiepileptic drug well known and used in human therapy. This ensures that they all can pass relatively easily the blood-brain barrier (BBB). The benzodiazepines were administered intraperitoneally (i.p.) and tested for their activity against sound-induced tonic and clonic seizures in a genetic model of experimental epilepsy, the DBA/2 mouse. Our data demonstrates an interesting inverse correlation between the ED50s and the efficacy (E %) of the drugs in increasing the peak chloride current elicited by GABA in cerebellar granule cells in culture. There is indication of the existence of a threshold of E % above which the increase of ED50 with increasing E % becomes linear. This is statistically significant for the clonic phase, whereas it is at the limit of significance for the tonic one. A possible interpretation of these results is that in this epilepsy model, projections from the cerebellum exert a convulsion prevention activity.


Asunto(s)
Anticonvulsivantes/farmacología , Benzodiazepinas/farmacología , Cerebelo/metabolismo , Epilepsia Generalizada/tratamiento farmacológico , Neuronas/efectos de los fármacos , Receptores de GABA-A/metabolismo , Potenciales de Acción , Animales , Anticonvulsivantes/administración & dosificación , Anticonvulsivantes/síntesis química , Anticonvulsivantes/uso terapéutico , Benzodiazepinas/administración & dosificación , Benzodiazepinas/síntesis química , Benzodiazepinas/uso terapéutico , Células Cultivadas , Cerebelo/citología , Cloruros/metabolismo , Ratones , Ratones Endogámicos DBA , Neuronas/metabolismo , Neuronas/fisiología , Ratas , Ratas Sprague-Dawley
15.
Biochim Biophys Acta ; 1564(1): 263-70, 2002 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-12101021

RESUMEN

The expression of GABA(A) receptors in rat cerebellar granules in culture has been studied by beta(2/3) subunit immunocytochemistry and fluorescence confocal microscopy. These cells show labeling all over the cell bodies' plasma membrane and dendrites. Treatment with the protein tyrosine kinase (PTK) inhibitor genistein results in a decrease of the labeling associated with the beta(2/3) subunit in both cell bodies and dendrites. No effect was found with an inactive genistein analogue, daidzein. A similar effect was found with a protein kinase C (PKC) activator, phorbol myristate acetate (PMA). The effects of genistein and PMA are additive.The interpretation of the results is that PTK inhibition blocks exocytotic deposit of newly synthesized GABA(A) receptors onto the neuronal plasma membrane. On the other hand, PKC activation speeds up endocytotic removal of GABA(A) receptors.


Asunto(s)
Cerebelo/metabolismo , Proteína Quinasa C/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Receptores de GABA-A/metabolismo , Animales , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Endocitosis/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Genisteína/farmacología , Microscopía Confocal , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Subunidades de Proteína , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Ratas , Receptores de GABA-A/química , Receptores de GABA-A/efectos de los fármacos , Acetato de Tetradecanoilforbol/farmacología
16.
Neurosci Lett ; 381(1-2): 139-43, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-15882805

RESUMEN

The effects of GABA on intracellular Ca2+ have been studied in neonatal rat cerebellum granule cells (CGC) in culture by Oregon Green and two-photon excitation fluorescence microscopy. This technique allowed the study of [Ca2+]i both in cell bodies and neurites. Working with a perfusion chloride concentration corresponding to the average extracellular level, we found that GABA induced an increase in [Ca2+]i in the cell bodies in many of the cells studied with a maximum at day 4 in vitro. This effect disappeared after day 6. However, no increase in [Ca2+]i was ever found in neurites at standard [Cl-]e. On the other hand, an increase of [Ca2+]i was found also in neurites when [Cl-]e was close to zero. The [Ca2+]i increases were blocked by both bicuculline methiodide and nimodipine. The results indicate the presence of an outward directed electrochemical gradient for chloride in the cell bodies which results in depolarization by GABA via GABA(A) receptor activation. Calcium ion influx ensues due to activation of voltage-gated calcium channels (VGCC). This phenomenon may mediate the well-known trophic effect of GABA on these cells at this developmental stage, via an action of [Ca2+]i on the transcriptional activity of the nucleus. No calcium accumulation takes place in neurites due to either no or a reverse (hyperpolarizing) electrochemical gradient for chloride ions. Such a circumstance in later developmental stages may be of importance for the phasic component of GABA-mediated inhibition.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Cerebelo/metabolismo , Cloro/metabolismo , Neuronas/metabolismo , Receptores de GABA-A/metabolismo , Fracciones Subcelulares/metabolismo , Ácido gamma-Aminobutírico/farmacología , Animales , Células Cultivadas , Cerebelo/citología , Cerebelo/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Relación Dosis-Respuesta a Droga , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/efectos de los fármacos
17.
J Mol Neurosci ; 56(4): 768-772, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25618569

RESUMEN

The effects of a classical 1,4-benzodiazepine agonist, such as diazepam, its catabolite N-desmethyl-diazepam (nordiazepam), and 1,5-benzodiazepines such as clobazam and RL 214 (a triazolobenzodiazepine previously synthesized in our labs) were evaluated on native GABAA receptors of cerebellar granule cells in culture. The parameter studied was the increase of GABA-activated chloride currents caused by these substances. The contributions of α6 ß2/3 γ2 and α1 α6 ß2/3 γ2 receptor subtypes to the increase of GABA-activated chloride current were investigated by comparing the effects of such substances in the presence vs. the absence of furosemide. Furosemide is in fact able to block such receptors. It was found that the percent enhancement of peak GABA-activated current doubled for diazepam, clobazam, and RL 214. However, it did not change for N-desmethyl-diazepam. These results indicate that diazepam, clobazam, and RL 214 interact exclusively with α1 ß2/3 γ2 receptors, while N-desmethyl-diazepam seems to interact with not only α1- but also α6-containing receptors.


Asunto(s)
Benzodiazepinas/farmacología , Cerebelo/metabolismo , Agonistas de Receptores de GABA-A/farmacología , Antagonistas de Receptores de GABA-A/farmacología , Receptores de GABA-A/metabolismo , Animales , Células Cultivadas , Cerebelo/citología , Furosemida/farmacología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley
18.
Neuroreport ; 15(1): 83-7, 2004 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-15106836

RESUMEN

Topical accumulation of calcium ions in neurites and cell bodies of rat cerebellar granule cells was studied by two-photon microscopy in neurons loaded with the Ca-sensitive fluorescent indicator Oregon Green 488 Bapta. High potassium caused a rapid surge of internal calcium ([Ca2+]i) in the cell body, followed by a plateau. In neurites, [Ca2+]i reached a peak and then decreased back to the control level. In contrast, in neurons stimulated by NMDA, [Ca2+]i reached a steady level and remained constant as long as the agonist was present in the bath, either in the cell bodies or in neurites. In the latter, the response to NMDA treatment was smaller and heterogeneous, and [Ca2+]i increased in certain segments of the neurite, but not in others.


Asunto(s)
Calcio/metabolismo , Cerebelo/metabolismo , Microscopía de Fluorescencia por Excitación Multifotónica/métodos , Neuronas/metabolismo , Animales , Calcio/análisis , Cerebelo/química , Cerebelo/efectos de los fármacos , N-Metilaspartato/farmacología , Neuronas/química , Neuronas/efectos de los fármacos , Cloruro de Potasio/farmacología , Ratas , Ratas Wistar
19.
Neurosci Lett ; 359(1-2): 25-8, 2004 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-15050703

RESUMEN

The role of the microfilaments and microtubules cytoskeleton in the stability of the subcellular distribution and function of GABAA receptors has been studied in rat cerebellar granule cells in culture. The disruption of either the microfilaments or the microtubules structures did not result in detectable changes in the receptors distribution, as assessed by immunocytochemistry, or in their function, as assessed by the whole-cell patch-clamp approach. A distinct disruption of both the subcellular distribution and the function of the GABAA receptors was found only if both microfilaments and microtubules were destroyed. The results suggest that, in the short term, the plasma membrane localization/stabilization and function of these receptors in granule cells are largely independent from microfilaments and microtubules individually, although they obviously depend on the presence of an organized cellular framework.


Asunto(s)
Citoesqueleto de Actina/química , Cerebelo/química , Cerebelo/citología , Microtúbulos/química , Receptores de GABA-A/análisis , Animales , Animales Recién Nacidos , Células Cultivadas , Ratas , Ratas Sprague-Dawley
20.
Neurotox Res ; 23(4): 301-14, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-22855343

RESUMEN

Prion diseases recognize, as a unique molecular trait, the misfolding of CNS-enriched prion protein (PrP(C)) into an aberrant isoform (PrP(Sc)). In this work, we characterize the in vitro toxicity of amino-terminally truncated recombinant PrP fragment (amino acids 90-231, PrP90-231), on rat cerebellar granule neurons (CGN), focusing on glutamatergic receptor activation and Ca(2+) homeostasis impairment. This recombinant fragment assumes a toxic conformation (PrP90-231(TOX)) after controlled thermal denaturation (1 h at 53 °C) acquiring structural characteristics identified in PrP(Sc) (enrichment in ß-structures, increased hydrophobicity, partial resistance to proteinase K, and aggregation in amyloid fibrils). By annexin-V binding assay, and evaluation of the percentage of fragmented and condensed nuclei, we show that treatment with PrP90-231(TOX), used in pre-fibrillar aggregation state, induces CGN apoptosis. This effect was associated with a delayed, but sustained elevation of [Ca(2+)]i. Both CGN apoptosis and [Ca(2+)]i increase were not observed using PrP90-231 in PrP(C)-like conformation. PrP90-231(TOX) effects were significantly reduced in the presence of ionotropic glutamate receptor antagonists. In particular, CGN apoptosis and [Ca(2+)]i increase were largely reduced, although not fully abolished, by pre-treatment with the NMDA antagonists APV and memantine, while the AMPA antagonist CNQX produced a lower, although still significant, effect. In conclusion, we report that CGN apoptosis induced by PrP90-231(TOX) correlates with a sustained elevation of [Ca(2+)]i mediated by the activation of NMDA and AMPA receptors.


Asunto(s)
Apoptosis/fisiología , Cerebelo/fisiología , Neuronas/fisiología , Fragmentos de Péptidos/toxicidad , Priones/toxicidad , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Apoptosis/efectos de los fármacos , Calcio/fisiología , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Cerebelo/efectos de los fármacos , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA