Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(22)2021 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-34039712

RESUMEN

Although ultrafast manipulation of magnetism holds great promise for new physical phenomena and applications, targeting specific states is held back by our limited understanding of how magnetic correlations evolve on ultrafast timescales. Using ultrafast resonant inelastic X-ray scattering we demonstrate that femtosecond laser pulses can excite transient magnons at large wavevectors in gapped antiferromagnets and that they persist for several picoseconds, which is opposite to what is observed in nearly gapless magnets. Our work suggests that materials with isotropic magnetic interactions are preferred to achieve rapid manipulation of magnetism.

2.
Rep Prog Phys ; 82(12): 126501, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31300626

RESUMEN

Over the past two decades, advances in computational algorithms have revealed a curious property of the two-dimensional Hubbard model (and related theories) with hole doping: the presence of close-in-energy competing ground states that display very different physical properties. On the one hand, there is a complicated state exhibiting intertwined spin, charge, and pair density wave orders. We call this 'type A'. On the other hand, there is a uniform d-wave superconducting state that we denote as 'type B'. We advocate, with the support of both microscopic theoretical calculations and experimental data, dividing the high-temperature cuprate superconductors into two corresponding families, whose properties reflect either the type A or type B ground states at low temperatures. We review the anomalous properties of the pseudogap phase that led us to this picture, and present a modern perspective on the role that umklapp scattering plays in these phenomena in the type B materials. This reflects a consistent framework that has emerged over the last decade, in which Mott correlations at weak coupling drive the formation of the pseudogap. We discuss this development, recent theory and experiments, and open issues.

3.
Phys Rev Lett ; 122(13): 130603, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31012606

RESUMEN

We show that confinement in the quantum Ising model leads to nonthermal eigenstates, in both continuum and lattice theories, in both one (1D) and two dimensions (2D). In the ordered phase, the presence of a confining longitudinal field leads to a profound restructuring of the excitation spectrum, with the low-energy two-particle continuum being replaced by discrete "meson" modes (linearly confined pairs of domain walls). These modes exist far into the spectrum and are atypical, in the sense that expectation values in the state with energy E do not agree with the microcanonical (thermal) ensemble prediction. Single meson states persist above the two-meson threshold due to a surprising lack of hybridization with the (n≥4)-domain wall continuum, a result that survives into the thermodynamic limit and that can be understood from analytical calculations. The presence of such states is revealed in anomalous postquench dynamics, such as the lack of a light cone, the suppression of the growth of entanglement entropy, and the absence of thermalization for some initial states. The nonthermal states are confined to the ordered phase-the disordered (paramagnetic) phase exhibits typical thermalization patterns in both 1D and 2D in the absence of integrability.

4.
Phys Rev Lett ; 122(2): 027201, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720312

RESUMEN

We show that the coupling of homogeneous Heisenberg spin-1/2 ladders in different phases leads to the formation of interfacial zero energy Majorana bound states. Unlike Majorana bound states at the interfaces of topological quantum wires, these states are void of topological protection and generally susceptible to local perturbations of the host spin system. However, a key message of our Letter is that, in practice, they show a high degree of resilience over wide parameter ranges which may make them interesting candidates for applications.

5.
Rep Prog Phys ; 81(4): 046002, 2018 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-29480168

RESUMEN

We review two important non-perturbative approaches for extracting the physics of low-dimensional strongly correlated quantum systems. Firstly, we start by providing a comprehensive review of non-Abelian bosonization. This includes an introduction to the basic elements of conformal field theory as applied to systems with a current algebra, and we orient the reader by presenting a number of applications of non-Abelian bosonization to models with large symmetries. We then tie this technique into recent advances in the ability of cold atomic systems to realize complex symmetries. Secondly, we discuss truncated spectrum methods for the numerical study of systems in one and two dimensions. For one-dimensional systems we provide the reader with considerable insight into the methodology by reviewing canonical applications of the technique to the Ising model (and its variants) and the sine-Gordon model. Following this we review recent work on the development of renormalization groups, both numerical and analytical, that alleviate the effects of truncating the spectrum. Using these technologies, we consider a number of applications to one-dimensional systems: properties of carbon nanotubes, quenches in the Lieb-Liniger model, 1 + 1D quantum chromodynamics, as well as Landau-Ginzburg theories. In the final part we move our attention to consider truncated spectrum methods applied to two-dimensional systems. This involves combining truncated spectrum methods with matrix product state algorithms. We describe applications of this method to two-dimensional systems of free fermions and the quantum Ising model, including their non-equilibrium dynamics.

6.
Phys Rev Lett ; 116(14): 145302, 2016 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-27104716

RESUMEN

We consider the real-time dynamics of an initially localized distinguishable impurity injected into the ground state of the Lieb-Liniger model. Focusing on the case where integrability is preserved, we numerically compute the time evolution of the impurity density operator in regimes far from analytically tractable limits. We find that the injected impurity undergoes a stuttering motion as it moves and expands. For an initially stationary impurity, the interaction-driven formation of a quasibound state with a hole in the background gas leads to arrested expansion-a period of quasistationary behavior. When the impurity is injected with a finite center-of-mass momentum, the impurity moves through the background gas in a snaking manner, arising from a quantum Newton's cradlelike scenario where momentum is exchanged back and forth between the impurity and the background gas.

7.
Phys Rev Lett ; 115(18): 180601, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26565450

RESUMEN

We study the effects of integrability-breaking perturbations on the nonequilibrium evolution of many-particle quantum systems. We focus on a class of spinless fermion models with weak interactions. We employ equation of motion techniques that can be viewed as generalizations of quantum Boltzmann equations. We benchmark our method against time-dependent density matrix renormalization group computations and find it to be very accurate as long as interactions are weak. For small integrability breaking, we observe robust prethermalization plateaux for local observables on all accessible time scales. Increasing the strength of the integrability-breaking term induces a "drift" away from the prethermalization plateaux towards thermal behavior. We identify a time scale characterizing this crossover.

8.
Sci Rep ; 9(1): 4263, 2019 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862782

RESUMEN

Fundamental control of magnetic coupling through heterostructure morphology is a prerequisite for rational engineering of magnetic ground states. We report the tuning of magnetic interactions in superlattices composed of single and bilayers of SrIrO3 inter-spaced with SrTiO3 in analogy to the Ruddlesden-Popper series iridates. Magnetic scattering shows predominately c-axis antiferromagnetic orientation of the magnetic moments for the bilayer, as in Sr3Ir2O7. However, the magnetic excitation gap, measured by resonant inelastic x-ray scattering, is quite different between the two structures, evidencing a significant change in the stability of the competing magnetic phases. In contrast, the single layer iridate hosts a more bulk-like gap. We find these changes are driven by bending of the c-axis Ir-O-Ir bond, which is much weaker in the single layer, and subsequent local environment changes, evidenced through x-ray diffraction and magnetic excitation modeling. Our findings demonstrate how large changes in the magnetic interactions can be tailored and probed in spin-orbit coupled heterostructures by engineering subtle structural modulations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA