Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 144
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-32142680

RESUMEN

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos/efectos de los fármacos , Resistencia a Antineoplásicos/inmunología , Neoplasias/tratamiento farmacológico , Proclorperazina/farmacología , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales Humanizados/farmacología , Citotoxicidad Celular Dependiente de Anticuerpos/inmunología , Presentación de Antígeno/efectos de los fármacos , Biopsia , Cetuximab/farmacología , Sistemas de Liberación de Medicamentos/métodos , Resistencia a Antineoplásicos/genética , Endocitosis/efectos de los fármacos , Endocitosis/inmunología , Xenoinjertos , Humanos , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Células Asesinas Naturales/efectos de los fármacos , Células Asesinas Naturales/inmunología , Células MCF-7 , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Ratones , Neoplasias/genética , Neoplasias/inmunología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Trastuzumab/farmacología
2.
EMBO J ; 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907032

RESUMEN

Dynamin 1 mediates fission of endocytic synaptic vesicles in the brain and has two major splice variants, Dyn1xA and Dyn1xB, which are nearly identical apart from the extended C-terminal region of Dyn1xA. Despite a similar set of binding partners, only Dyn1xA is enriched at endocytic zones and accelerates vesicle fission during ultrafast endocytosis. Here, we report that Dyn1xA achieves this localization by preferentially binding to Endophilin A1 through a newly defined binding site within its long C-terminal tail extension. Endophilin A1 binds this site at higher affinity than the previously reported site, and the affinity is determined by amino acids within the Dyn1xA tail but outside the binding site. This interaction is regulated by the phosphorylation state of two serine residues specific to the Dyn1xA variant. Dyn1xA and Endophilin A1 colocalize in patches near the active zone, and mutations disrupting Endophilin A binding to the long tail cause Dyn1xA mislocalization and stalled endocytic pits on the plasma membrane during ultrafast endocytosis. Together, these data suggest that the specificity for ultrafast endocytosis is defined by the phosphorylation-regulated interaction of Endophilin A1 with the C-terminal extension of Dyn1xA.

3.
Cell ; 146(3): 471-84, 2011 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-21816279

RESUMEN

Clathrin-mediated endocytosis (CME) regulates many cell physiological processes such as the internalization of growth factors and receptors, entry of pathogens, and synaptic transmission. Within the endocytic network, clathrin functions as a central organizing platform for coated pit assembly and dissociation via its terminal domain (TD). We report the design and synthesis of two compounds named pitstops that selectively block endocytic ligand association with the clathrin TD as confirmed by X-ray crystallography. Pitstop-induced inhibition of clathrin TD function acutely interferes with receptor-mediated endocytosis, entry of HIV, and synaptic vesicle recycling. Endocytosis inhibition is caused by a dramatic increase in the lifetimes of clathrin coat components, including FCHo, clathrin, and dynamin, suggesting that the clathrin TD regulates coated pit dynamics. Pitstops provide new tools to address clathrin function in cell physiology with potential applications as inhibitors of virus and pathogen entry and as modulators of cell signaling.


Asunto(s)
Clatrina/química , Clatrina/metabolismo , Invaginaciones Cubiertas de la Membrana Celular/metabolismo , Técnicas Citológicas/métodos , Bibliotecas de Moléculas Pequeñas , Complejo 2 de Proteína Adaptadora/metabolismo , Animales , Células Cultivadas , Invaginaciones Cubiertas de la Membrana Celular/efectos de los fármacos , Cristalografía por Rayos X , Dinaminas/metabolismo , Endocitosis , Humanos , Ratones , Estructura Terciaria de Proteína , Transducción de Señal , Sinapsis/metabolismo , Sinapsis/ultraestructura
4.
J Proteome Res ; 23(7): 2355-2366, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38819404

RESUMEN

High-throughput tissue proteomics has great potential in the advancement of precision medicine. Here, we investigated the combined sensitivity of trap-elute microflow liquid chromatography with a ZenoTOF for DIA proteomics and phosphoproteomics. Method optimization was conducted on HEK293T cell lines to determine the optimal variable window size, MS2 accumulation time and gradient length. The ZenoTOF 7600 was then compared to the previous generation TripleTOF 6600 using eight rat organs, finding up to 23% more proteins using a fifth of the sample load and a third of the instrument time. Spectral reference libraries generated from Zeno SWATH data in FragPipe (MSFragger-DIA/DIA-NN) contained 4 times more fragment ions than the DIA-NN only library and quantified more proteins. Replicate single-shot phosphopeptide enrichments of 50-100 µg of rat tryptic peptide were analyzed by microflow HPLC using Zeno SWATH without fractionation. Using Spectronaut we quantified a shallow phosphoproteome containing 1000-3000 phosphoprecursors per organ. Promisingly, clear hierarchical clustering of organs was observed with high Pearson correlation coefficients >0.95 between replicate enrichments and median CV of 20%. The combined sensitivity of microflow HPLC with Zeno SWATH allows for the high-throughput quantitation of an extensive proteome and shallow phosphoproteome from small tissue samples.


Asunto(s)
Fosfoproteínas , Proteómica , Animales , Proteómica/métodos , Ratas , Humanos , Fosfoproteínas/análisis , Fosfoproteínas/metabolismo , Células HEK293 , Fosfopéptidos/análisis , Cromatografía Líquida de Alta Presión/métodos , Proteoma/análisis , Proteoma/metabolismo
5.
Anal Chem ; 96(10): 4093-4102, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38427620

RESUMEN

Proteomic analysis by mass spectrometry of small (≤2 mg) solid tissue samples from diverse formats requires high throughput and comprehensive proteome coverage. We developed a nearly universal, rapid, and robust protocol for sample preparation, suitable for high-throughput projects that encompass most cell or tissue types. This end-to-end workflow extends from original sample to loading the mass spectrometer and is centered on a one-tube homogenization and digestion method called Heat 'n Beat (HnB). It is applicable to most tissues, regardless of how they were fixed or embedded. Sample preparation was divided into separate challenges. The initial sample washing and final peptide cleanup steps were adapted to three tissue sources: fresh frozen (FF), optimal cutting temperature (OCT) compound embedded (FF-OCT), and formalin-fixed paraffin embedded (FFPE). Third, for core processing, tissue disruption and lysis were decreased to a 7 min heat and homogenization treatment, and reduction, alkylation, and proteolysis were optimized into a single step. The refinements produced near doubled peptide yield when compared to our earlier method ABLE delivered a consistently high digestion efficiency of 85-90%, reported by ProteinPilot, and required only 38 min for core processing in a single tube, with the total processing time being 53-63 min. The robustness of HnB was demonstrated on six organ types, a cell line, and a cancer biopsy. Its suitability for high-throughput applications was demonstrated on a set of 1171 FF-OCT human cancer biopsies, which were processed for end-to-end completion in 92 h, producing highly consistent peptide yield and quality for over 3513 MS runs.


Asunto(s)
Calor , Neoplasias , Humanos , Proteómica/métodos , Péptidos , Manejo de Especímenes , Adhesión en Parafina , Formaldehído/química , Fijación del Tejido
6.
Pediatr Blood Cancer ; 71(6): e30980, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38556739

RESUMEN

Survival rates in some paediatric cancers have improved greatly over recent decades, in part due to the identification of diagnostic, prognostic and predictive molecular signatures, and the development of risk-directed therapies. However, other paediatric cancers have proved difficult to treat, and there is an urgent need to identify novel biomarkers that reveal therapeutic opportunities. The proteome is the total set of expressed proteins present in a cell or tissue at a point in time, and is vastly more dynamic than the genome. Proteomics holds significant promise for cancer research, as proteins are ultimately responsible for cellular phenotype and are the target of most anticancer drugs. Here, we review the discoveries, opportunities and challenges of proteomic analyses in paediatric cancer, with a focus on mass spectrometry (MS)-based approaches. Accelerating incorporation of proteomics into paediatric precision medicine has the potential to improve survival and quality of life for children with cancer.


Asunto(s)
Biomarcadores de Tumor , Neoplasias , Proteómica , Humanos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Proteómica/métodos , Niño , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Medicina de Precisión/métodos , Espectrometría de Masas , Proteoma/análisis
7.
Proteomics ; 23(7-8): e2200031, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36086888

RESUMEN

Proteomic data are a uniquely valuable resource for drug response prediction and biomarker discovery because most drugs interact directly with proteins in target cells rather than with DNA or RNA. Recent advances in mass spectrometry and associated processing methods have enabled the generation of large-scale proteomic datasets. Here we review the significant opportunities that currently exist to combine large-scale proteomic data with drug-related research, a field termed pharmacoproteomics. We describe successful applications of drug response prediction using molecular data, with an emphasis on oncology. We focus on technical advances in data-independent acquisition mass spectrometry (DIA-MS) that can facilitate the discovery of protein biomarkers for drug responses, alongside the increased availability of big biomedical data. We spotlight new opportunities for machine learning in pharmacoproteomics, driven by the combination of these large datasets and improved high-performance computing. Finally, we explore the value of pre-clinical models for pharmacoproteomic studies and the accompanying challenges of clinical validation. We propose that pharmacoproteomics offers the potential for novel discovery and innovation within the cancer landscape.


Asunto(s)
Neoplasias , Proteómica , Humanos , Proteómica/métodos , Biomarcadores/análisis , Espectrometría de Masas/métodos , Proteínas , Neoplasias/tratamiento farmacológico
8.
Proteomics ; 23(7-8): e2200238, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-35968695

RESUMEN

Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic.


Asunto(s)
Neoplasias , Proteómica , Humanos , Proteómica/métodos , Espectrometría de Masas/métodos , Biomarcadores de Tumor , Proteoma/análisis
9.
PLoS Biol ; 17(3): e3000170, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30822303

RESUMEN

Depolarization of presynaptic terminals stimulates calcium influx, which evokes neurotransmitter release and activates phosphorylation-based signalling. Here, we present the first global temporal profile of presynaptic activity-dependent phospho-signalling, which includes two KCl stimulation levels and analysis of the poststimulus period. We profiled 1,917 regulated phosphopeptides and bioinformatically identified six temporal patterns of co-regulated proteins. The presynaptic proteins with large changes in phospho-status were again prominently regulated in the analysis of 7,070 activity-dependent phosphopeptides from KCl-stimulated cultured hippocampal neurons. Active zone scaffold proteins showed a high level of activity-dependent phospho-regulation that far exceeded the response from postsynaptic density scaffold proteins. Accordingly, bassoon was identified as the major target of neuronal phospho-signalling. We developed a probabilistic computational method, KinSwing, which matched protein kinase substrate motifs to regulated phosphorylation sites to reveal underlying protein kinase activity. This approach allowed us to link protein kinases to profiles of co-regulated presynaptic protein networks. Ca2+- and calmodulin-dependent protein kinase IIα (CaMKIIα) responded rapidly, scaled with stimulus strength, and had long-lasting activity. Mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) was the main protein kinase predicted to control a distinct and significant pattern of poststimulus up-regulation of phosphorylation. This work provides a unique resource of activity-dependent phosphorylation sites of synaptosomes and neurons, the vast majority of which have not been investigated with regard to their functional impact. This resource will enable detailed characterization of the phospho-regulated mechanisms impacting the plasticity of neurotransmitter release.


Asunto(s)
Terminales Presinápticos/metabolismo , Sinaptosomas/metabolismo , Animales , Calcio/metabolismo , Calmodulina/metabolismo , Quinasa 5 Dependiente de la Ciclina/metabolismo , Masculino , Espectrometría de Masas , Fosfoproteínas/metabolismo , Fosforilación , Cloruro de Potasio/farmacología , Terminales Presinápticos/fisiología , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Sinaptosomas/fisiología
10.
EMBO J ; 35(21): 2270-2284, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27670760

RESUMEN

The large GTPase dynamin is the first protein shown to catalyze membrane fission. Dynamin and its related proteins are essential to many cell functions, from endocytosis to organelle division and fusion, and it plays a critical role in many physiological functions such as synaptic transmission and muscle contraction. Research of the past three decades has focused on understanding how dynamin works. In this review, we present the basis for an emerging consensus on how dynamin functions. Three properties of dynamin are strongly supported by experimental data: first, dynamin oligomerizes into a helical polymer; second, dynamin oligomer constricts in the presence of GTP; and third, dynamin catalyzes membrane fission upon GTP hydrolysis. We present the two current models for fission, essentially diverging in how GTP energy is spent. We further discuss how future research might solve the remaining open questions presently under discussion.


Asunto(s)
Membrana Celular/fisiología , Dinaminas/fisiología , Animales , Guanosina Trifosfato/fisiología , Humanos
11.
Angew Chem Int Ed Engl ; 59(24): 9601-9609, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-32092778

RESUMEN

Glycosyltransferases carry out important cellular functions in species ranging from bacteria to humans. Despite their essential roles in biology, simple and robust activity assays that can be easily applied to high-throughput screening for inhibitors of these enzymes have been challenging to develop. Herein, we report a bead-based strategy to measure the group-transfer activity of glycosyltransferases sensitively using simple fluorescence measurements, without the need for coupled enzymes or secondary reactions. We validate the performance and accuracy of the assay using O-GlcNAc transferase (OGT) as a model system through detailed Michaelis-Menten kinetic analysis of various substrates and inhibitors. Optimization of this assay and application to high-throughput screening enabled screening for inhibitors of OGT, leading to a novel inhibitory scaffold. We believe this assay will prove valuable not only for the study of OGT, but also more widely as a general approach for the screening of glycosyltransferases and other group-transfer enzymes.


Asunto(s)
Pruebas de Enzimas/métodos , N-Acetilglucosaminiltransferasas/metabolismo , Espectrometría de Fluorescencia/métodos , Glicosilación , Cinética , Especificidad por Sustrato
12.
Proteomics ; 19(21-22): e1900109, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31321850

RESUMEN

The cancer tissue proteome has enormous potential as a source of novel predictive biomarkers in oncology. Progress in the development of mass spectrometry (MS)-based tissue proteomics now presents an opportunity to exploit this by applying the strategies of comprehensive molecular profiling and big-data analytics that are refined in other fields of 'omics research. ProCan (ProCan is a registered trademark) is a program aiming to generate high-quality tissue proteomic data across a broad spectrum of cancer types. It is based on data-independent acquisition-MS proteomic analysis of annotated tissue samples sourced through collaboration with expert clinical and cancer research groups. The practical requirements of a high-throughput translational research program have shaped the approach that ProCan is taking to address challenges in study design, sample preparation, raw data acquisition, and data analysis. The ultimate goal is to establish a large proteomics knowledge-base that, in combination with other cancer 'omics data, will accelerate cancer research.


Asunto(s)
Neoplasias/genética , Proteoma/genética , Proteómica/estadística & datos numéricos , Programas Informáticos , Biomarcadores de Tumor/genética , Análisis de Datos , Ensayos Analíticos de Alto Rendimiento/estadística & datos numéricos , Humanos , Espectrometría de Masas , Neoplasias/patología , Manejo de Especímenes
13.
Traffic ; 18(6): 392-410, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28321960

RESUMEN

CD4 T cells are important cellular targets for HIV-1, yet the primary site of HIV fusion remains unresolved. Candidate fusion sites are either the plasma membrane or from within endosomes. One area of investigation compounding the controversy of this field, is the role of the protein dynamin in the HIV life cycle. To understand the role of dynamin in primary CD4 T cells we combined dynamin inhibition with a series of complementary assays based on single particle tracking, HIV fusion, detection of HIV DNA products and active viral transcription. We identify 3 levels of dynamin influence on the HIV life cycle. Firstly, dynamin influences productive infection by preventing cell cycle progression. Secondly, dynamin influences endocytosis rates and increases the probability of endosomal fusion. Finally, we provide evidence in resting CD4 T cells that dynamin directly regulates the HIV fusion reaction at the plasma membrane. We confirm this latter observation using 2 divergent dynamin modulating compounds, one that enhances dynamin conformations associated with dynamin ring formation (ryngo-1-23) and the other that preferentially targets dynamin conformations that appear in helices (dyngo-4a). This in-depth understanding of dynamin's roles in HIV infection clarifies recent controversies and furthermore provides evidence for dynamin regulation specifically in the HIV fusion reaction.


Asunto(s)
Dinaminas/metabolismo , Endocitosis/fisiología , Endosomas/metabolismo , Infecciones por VIH/virología , VIH-1/fisiología , Membrana Celular/metabolismo , Células Cultivadas , Humanos , Internalización del Virus
14.
J Proteome Res ; 18(3): 1019-1031, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30652484

RESUMEN

In the current study, we show how ProCan90, a curated data set of HEK293 technical replicates, can be used to optimize the configuration options for algorithms in the OpenSWATH pipeline. Furthermore, we use this case study as a proof of concept for horizontal scaling of such a pipeline to allow 45 810 computational analysis runs of OpenSWATH to be completed within four and a half days on a budget of US $10 000. Through the use of Amazon Web Services (AWS), we have successfully processed each of the ProCan 90 files with 506 combinations of input parameters. In total, the project consumed more than 340 000 core hours of compute and generated in excess of 26 TB of data. Using the resulting data and a set of quantitative metrics, we show an analysis pathway that allows the calculation of two optimal parameter sets, one for a compute rich environment (where run time is not a constraint), and another for a compute poor environment (where run time is optimized). For the same input files and the compute rich parameter set, we show a 29.8% improvement in the number of quality protein (>2 peptide) identifications found compared to the current OpenSWATH defaults, with negligible adverse effects on quantification reproducibility or drop in identification confidence, and a median run time of 75 min (103% increase). For the compute poor parameter set, we find a 55% improvement in the run time from the default parameter set, at the expense of a 3.4% decrease in the number of quality protein identifications, and an intensity CV decrease from 14.0% to 13.7%.


Asunto(s)
Biología Computacional/métodos , Bases de Datos de Proteínas/normas , Conjuntos de Datos como Asunto/normas , Células HEK293 , Humanos , Proteínas/análisis , Proteómica/métodos , Reproducibilidad de los Resultados , Factores de Tiempo
15.
J Proteome Res ; 18(1): 399-405, 2019 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-30444966

RESUMEN

We have developed a streamlined proteomic sample preparation protocol termed Accelerated Barocycler Lysis and Extraction (ABLE) that substantially reduces the time and cost of tissue sample processing. ABLE is based on pressure cycling technology (PCT) for rapid tissue solubilization and reliable, controlled proteolytic digestion. Here, a previously reported PCT based protocol was optimized using 1-4 mg biopsy punches from rat kidney. The tissue denaturant urea was substituted with a combination of sodium deoxycholate (SDC) and N-propanol. ABLE produced comparable numbers of protein identifications in half the sample preparation time, being ready for MS injection in 3 h compared with 6 h for the conventional urea based method. To validate ABLE, it was applied to a diverse range of rat tissues (kidney, lung, muscle, brain, testis), human HEK 293 cell lines, and human ovarian cancer samples, followed by SWATH-mass spectrometry (SWATH-MS). There were similar numbers of quantified proteins between ABLE-SWATH and the conventional method, with greater than 70% overlap for all sample types, except muscle (58%). The ABLE protocol offers a standardized, high-throughput, efficient, and reproducible proteomic preparation method that when coupled with SWATH-MS has the potential to accelerate proteomics analysis to achieve a clinically relevant turn-around time.


Asunto(s)
Espectrometría de Masas/métodos , Proteolisis , Proteómica/métodos , Manejo de Especímenes/métodos , 1-Propanol , Animales , Biopsia , Línea Celular Transformada , Ácido Desoxicólico , Células HEK293 , Humanos , Ratas
16.
Anal Chem ; 91(20): 12670-12679, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509387

RESUMEN

Atherosclerosis is a complex, multifactorial disease characterized by the buildup of plaque in the arterial wall. Apolipoprotein E gene deficient (Apoe-/-) mice serve as a commonly used tool to elucidate the pathophysiology of atherosclerosis because of their propensity to spontaneously develop arterial lesions. To date, however, an integrated omics assessment of atherosclerotic lesions in individual Apoe-/- mice has been challenging because of the small amount of diseased and nondiseased tissue available. To address this current limitation, we developed a multiomics method (Multi-ABLE) based on the proteomic method called accelerated Barocycler lysis and extraction (ABLE) to assess the depth of information that can be obtained from arterial tissue derived from a single mouse by splitting ABLE to allow for a combined proteomics-metabolomics-lipidomics analysis (Multi-ABLE). The new method includes tissue lysis via pressure cycling technology (PCT) in a Barocycler, followed by proteomic analysis of half the sample by nanoLC-MS and sequential extraction of lipids (organic extract) and metabolites (aqueous extract) combined with HILIC and reversed phase chromatography and time-of-flight mass spectrometry on the other half. Proteomic analysis identified 845 proteins, 93 of which were significantly altered in lesion-containing arteries. Lipidomic and metabolomic analyses detected 851 lipid and 362 metabolite features, which included 215 and 65 identified lipids and metabolites, respectively. The Multi-ABLE method is the first to apply a concurrent multiomics pipeline to cardiovascular disease using small (<5 mg) tissue samples, and it is applicable to other diseases where limited size samples are available at specific points during disease progression.


Asunto(s)
Arterias/metabolismo , Lípidos/análisis , Metaboloma , Metabolómica/métodos , Proteómica/métodos , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Arterias/química , Aterosclerosis/metabolismo , Aterosclerosis/patología , Cromatografía Líquida de Alta Presión , Modelos Animales de Enfermedad , Interacciones Hidrofóbicas e Hidrofílicas , Lípidos/aislamiento & purificación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Análisis de Componente Principal , Espectrometría de Masas en Tándem
17.
Cancer Invest ; 37(3): 144-155, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30907150

RESUMEN

Glioma stem cells (GSCs) play major roles in drug resistance, tumour maintenance and recurrence of glioblastoma. We investigated inhibition of the GTPase dynamin 2 as a therapy for glioblastoma. Glioma cell lines and patient-derived GSCs were treated with dynamin inhibitors, Dynole 34-2 and CyDyn 4-36. We studied about cell viability, and GSC neurosphere formation in vitro and orthotopic tumour growth in vivo. Dynamin inhibition reduced glioblastoma cell line viability and suppressed neurosphere formation and migration of GSCs. Tumour growth was reduced by CyDyn 4-36 treatment. Dynamin 2 inhibition therefore represents a novel approach for stem cell-directed Glioblastoma therapy.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Cianoacrilatos/uso terapéutico , Dinamina II/antagonistas & inhibidores , Glioma/tratamiento farmacológico , Indoles/uso terapéutico , Células Madre Neoplásicas/efectos de los fármacos , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Dinamina II/metabolismo , Glioma/metabolismo , Glioma/patología , Humanos , Terapia Molecular Dirigida/métodos , Células Madre Neoplásicas/metabolismo , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Mol Cell Proteomics ; 15(8): 2537-53, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27174698

RESUMEN

The mitotic spindle is required for chromosome congression and subsequent equal segregation of sister chromatids. These processes involve a complex network of signaling molecules located at the spindle. The endocytic protein, clathrin, has a "moonlighting" role during mitosis, whereby it stabilizes the mitotic spindle. The signaling pathways that clathrin participates in to achieve mitotic spindle stability are unknown. Here, we assessed the mitotic spindle proteome and phosphoproteome in clathrin-depleted cells using quantitative MS/MS (data are available via ProteomeXchange with identifier PXD001603). We report a spindle proteome that consists of 3046 proteins and a spindle phosphoproteome consisting of 5157 phosphosites in 1641 phosphoproteins. Of these, 2908 (95.4%) proteins and 1636 (99.7%) phosphoproteins are known or predicted spindle-associated proteins. Clathrin-depletion from spindles resulted in dysregulation of 121 proteins and perturbed signaling to 47 phosphosites. The majority of these proteins increased in mitotic spindle abundance and six of these were validated by immunofluorescence microscopy. Functional pathway analysis confirmed the reported role of clathrin in mitotic spindle stabilization for chromosome alignment and highlighted possible new mechanisms of clathrin action. The data also revealed a novel second mitotic role for clathrin in bipolar spindle formation.


Asunto(s)
Clatrina/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Huso Acromático/metabolismo , Cromatografía Liquida , Células HeLa , Humanos , Metafase , Fosforilación , Unión Proteica , Mapas de Interacción de Proteínas , Transducción de Señal , Espectrometría de Masas en Tándem
19.
Traffic ; 16(11): 1174-92, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26399547

RESUMEN

Cytokinesis is the final stage of cell division and produces two independent daughter cells. Vesicles derived from internal membrane stores, such as the Golgi, lysosomes, and early and recycling endosomes accumulate at the intracellular bridge (ICB) during cytokinesis. Here, we use electron tomography to show that many ICB vesicles are not independent but connected, forming a newly described ICB vesicular structure - narrow tubules that are often branched. These 'midbody tubules' labelled with horseradish peroxidase (HRP) within 10 min after addition to the surrounding medium demonstrating that they are derived from endocytosis. HRP-labelled vesicles and tubules were observed at the rim of the ICB after only 1 min, suggesting that midbody tubules are likely to be generated by local endocytosis occurring at the ICB rim. Indeed, at least one tubule was open to the extracellular space, indicative of a local origin within the ICB. Inhibition of cholesterol-dependent endocytosis by exposure to methyl-ß-cyclodextrin and filipin reduced formation of HRP-labelled midbody tubules, and induced multinucleation following ICB formation. In contrast, dynamin inhibitors, which block clathrin-mediated endocytosis, induced multinucleation but had no effect on the formation of HRP-labelled midbody tubules. Therefore, our data reveal the existence of a cholesterol-dependent endocytic pathway occurring locally at the ICB, which contributes to the accumulation of vesicles and tubules that contribute to the completion of cytokinesis.


Asunto(s)
Colesterol/metabolismo , Citocinesis/fisiología , Endocitosis/fisiología , Endosomas/metabolismo , Lisosomas/metabolismo , Aparato de Golgi/metabolismo , Peroxidasa de Rábano Silvestre/metabolismo , Humanos , Microscopía Electrónica/métodos , beta-Ciclodextrinas/metabolismo
20.
Traffic ; 16(6): 635-54, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25693808

RESUMEN

Chlorpromazine is a phenothiazine-derived antipsychotic drug (APD) that inhibits clathrin-mediated endocytosis (CME) in cells by an unknown mechanism. We examined whether its action and that of other APDs might be mediated by the GTPase activity of dynamin. Eight of eight phenothiazine-derived APDs inhibited dynamin I (dynI) in the 2-12 µm range, the most potent being trifluoperazine (IC50 2.6 ± 0.7 µm). They also inhibited dynamin II (dynII) at similar concentrations. Typical and atypical APDs not based on the phenothiazine scaffold were 8- to 10-fold less potent (haloperidol and clozapine) or were inactive (droperidol, olanzapine and risperidone). Kinetic analysis showed that phenothiazine-derived APDs were lipid competitive, while haloperidol was uncompetitive with lipid. Accordingly, phenothiazine-derived APDs inhibited dynI GTPase activity stimulated by lipids but not by various SH3 domains. All dynamin-active APDs also inhibited transferrin (Tfn) CME in cells at related potencies. Structure-activity relationships (SAR) revealed dynamin inhibition to be conferred by a substituent group containing a terminal tertiary amino group at the N2 position. Chlorpromazine was previously proposed to target AP-2 recruitment in the formation of clathrin-coated vesicles (CCV). However, neither chlorpromazine nor thioridazine affected AP-2 interaction with amphiphysin or clathrin. Super-resolution microscopy revealed that chlorpromazine blocks neither clathrin recruitment by AP-2, nor AP-2 recruitment, showing that CME inhibition occurs downstream of CCV formation. Overall, potent dynamin inhibition is a shared characteristic of phenothiazine-derived APDs, but not other typical or atypical APDs, and the data indicate that dynamin is their likely in-cell target in endocytosis.


Asunto(s)
Antipsicóticos/farmacología , Clatrina/metabolismo , Dinaminas/metabolismo , Endocitosis/efectos de los fármacos , Fenotiazinas/farmacología , Línea Celular Tumoral , Vesículas Cubiertas por Clatrina/metabolismo , Humanos , Transferrina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA