Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharmacol ; 99(2): 133-146, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33288547

RESUMEN

Oligodendrocytes (OLs) express functional GABAA receptors (GABAARs) that are activated by GABA released at synaptic contacts with axons or by ambient GABA in extrasynaptic domains. In both instances, the receptors' molecular identity has not been fully defined. Furthermore, data on their structural diversity in different brain regions and information on age-dependent changes in their molecular composition are scant. This lack of knowledge has delayed access to a better understanding of the role of GABAergic signaling between neurons and OLs. Here, we used functional, and pharmacological analyses, as well as gene and protein expression of GABAAR subunits, to explore the subunit combination that could explain the receptor functional profile expressed in OLs from the neonate rat. We found that GABAAR composed of α3ß2γ1 subunits mimicked the characteristics of the endogenous receptor when expressed heterologously in Xenopus laevis oocytes. Either α3 or γ1 subunit silencing by small interfering RNA transfection changed the GABA-response characteristics in oligodendrocyte precursor cells, indicating their participation in the endogenous receptor conformation. Thus, α3 subunit silencing shifted the mean EC50 for GABA from 75.1 to 46.6 µM, whereas γ1 silencing reduced the current amplitude response by 55%. We also observed that ß-carbolines differentially enhance GABA responses in oligodendroglia as compared with those in neurons. These results contribute to defining the molecular and pharmacological properties of GABAARs in OLs. Additionally, the identification of ß-carbolines as selective enhancers of GABAARs in OLs may help to study the role of GABAergic signaling during myelination. SIGNIFICANCE STATEMENT: GABAergic signaling through GABAA receptors (GABAARs) expressed in the oligodendroglial lineage contributes to the myelination control. Determining the molecular identity and the pharmacology of these receptors is essential to define their specific roles in myelination. Using GABAAR subunit expression and silencing, we identified that the GABAAR subunit combination α3ß2γ1 conforms the bulk of GABAARs in oligodendrocytes from rat neonates. Furthermore, we found that these receptors have differential pharmacological properties that allow specific positive modulation by ß-carbolines.


Asunto(s)
Encéfalo/citología , Neuronas/citología , Oligodendroglía/citología , Receptores de GABA-A/metabolismo , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Carbolinas/farmacología , Células Cultivadas , Femenino , Silenciador del Gen , Ratones , Neuronas/metabolismo , Oligodendroglía/metabolismo , Ratas , Receptores de GABA-A/genética , Xenopus laevis
2.
Neurochem Res ; 42(9): 2443-2455, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28345117

RESUMEN

Inwardly rectifying K+ (Kir) channel expression signals at an advanced stage of maturation during oligodendroglial differentiation. Knocking down their expression halts the generation of myelin and produces severe abnormalities in the central nervous system. Kir4.1 is the main subunit involved in the tetrameric structure of Kir channels in glial cells; however, the precise composition of Kir channels expressed in oligodendrocytes (OLs) remains partially unknown, as participation of other subunits has been proposed. Kir channels are sensitive to H+; thus, intracellular acidification produces Kir current inhibition. Since Kir subunits have differential sensitivity to H+, we studied the effect of intracellular acidification on Kir currents expressed in cultured OLs derived from optic nerves of 12-day-old rats. Unexpectedly, Kir currents in OLs (2-4 DIV) did not change within the pH range of 8.0-5.0, as observed when using standard whole-cell voltage-clamp recording or when preserving cytoplasmic components with the perforated patch-clamp technique. In contrast, low pH inhibited astrocyte Kir currents, which was consistent with the involvement of the Kir4.1 subunit. The H+-insensitivity expressed in OL Kir channels was not intrinsic because Kir cloning showed no difference in the sequence reported for the Kir4.1, Kir2.1, or Kir5.1 subunits. Moreover, when Kir channels were heterologously expressed in Xenopus oocytes they behaved as expected in their general properties and sensitivity to H+. It is therefore concluded that Kir channel H+-sensitivity in OLs is modulated through an extrinsic mechanism, probably by association with a modulatory component or by posttranslational modifications.


Asunto(s)
Oligodendroglía/fisiología , Nervio Óptico/fisiología , Canales de Potasio de Rectificación Interna/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Concentración de Iones de Hidrógeno , Potenciales de la Membrana/fisiología , Nervio Óptico/citología , Ratas , Ratas Sprague-Dawley , Xenopus laevis
3.
J Cell Biochem ; 115(11): 1955-66, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24913779

RESUMEN

P2X7 is a purinergic receptor-channel; its activation by ATP elicits a broad set of cellular actions, from apoptosis to signals for survival. Here, P2X7 expression and function was studied in human ovarian carcinoma (OCA) cells, and biopsies from non-cancerous and cancer patients were analyzed by immunohistochemistry. Ovarian surface epithelium in healthy tissue expressed P2X7 at a high level that was maintained throughout the cancer. The cell lines SKOV-3 and CAOV-3 were used to investigate P2X7 functions in OCA. In SKOV-3 cells, selective stimulation of P2X7 by 2'(3')-O-(4-benzoylbenzoyl) adenosine-5'-triphosphate (BzATP) induced a dose-dependent increase of intracellular Ca(2+) concentration ([Ca(2+)](i)) but not cell death. Instead, BzATP increased the levels of phosphorylated ERK and AKT (pERK and pAKT), with an EC(50) of 44 ± 2 and 1.27 ± 0.5 µM, respectively; 10 µM BzATP evoked a maximum effect within 15 min that lasted for 120 min. Interestingly, basal levels of pERK and pAKT were decreased in the presence of apyrase in the medium, strongly suggesting an endogenous, ATP-mediated phenomenon. Accordingly: (i) mechanically stimulated cells generated a [Ca(2+)](i) increase that was abolished by apyrase; (ii) apyrase induced a decrease in culture viability, as measured by the MTS assay for mitochondrial activity; and (iii) incubation with 10 µM AZ10606120, a specific P2X7 antagonist and transfection with the dominant negative P2X7 mutant E496A, both reduced cell viability to 70.1 ± 8.9% and to 76.5 ± 5%, respectively, of control cultures. These observations suggested that P2X7 activity was auto-induced through ATP efflux; this increased pERK and pAKT levels that generated a positive feedback on cell viability.


Asunto(s)
Adenosina Trifosfato/análogos & derivados , Calcio/metabolismo , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Receptores Purinérgicos P2X7/metabolismo , Adenosina Trifosfato/farmacología , Adulto , Anciano , Apirasa/farmacología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Persona de Mediana Edad , Comunicación Paracrina/efectos de los fármacos
4.
J Cell Physiol ; 227(10): 3457-70, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22213197

RESUMEN

Xenopus follicles are endowed with specific receptors for ATP, ACh, and AII, transmitters proposed as follicular modulators of gamete growth and maturation in several species. Here, we studied ion-current responses elicited by stimulation of these receptors and their activation mechanisms using the voltage-clamp technique. All agonists elicited Cl(-) currents that depended on coupling between oocyte and follicular cells and on an increase in intracellular Ca(2+) concentration ([Ca(2+) ](i)), but they differed in their activation mechanisms and in the localization of the molecules involved. Both ATP and ACh generated fast Cl(-) (F(Cl)) currents, while AII activated an oscillatory response; a robust Ca(2+) influx linked specifically to F(Cl) activation elicited an inward current (I(iw,Ca)) which was carried mainly by Cl(-) ions, through channels with a sequence of permeability of SCN(-) > I(-) > Br(-) > Cl(-). Like F(Cl), I(iw,Ca) was not dependent on oocyte [Ca(2+) ](i) ; instead both were eliminated by preventing [Ca(2+) ](i) increase in the follicular cells, and also by U73122 and 2-APB, drugs that inhibit the phospolipase C (PLC) pathway. The results indicated that F(Cl) and I(iw,Ca) were produced by the expected, PLC-stimulated Ca(2+) -release and Ca(2+) -influx, respectively, and by the opening of I(Cl(Ca)) channels located in the follicular cells. Given their pharmacological characteristics and behavior in conditions of divalent cation deprivation, Ca(2+) -influx appeared to be driven through store-operated, calcium-like channels. The AII response, which is also known to require PLC activation, did not activate I(iw,Ca) and was strictly dependent on oocyte [Ca(2+) ](i) increase; thus, ATP and ACh receptors seem to be expressed in a population of follicular cells different from that expressing AII receptors, which were coupled to the oocyte through distinct gap-junction channels.


Asunto(s)
Calcio/metabolismo , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Uniones Comunicantes/metabolismo , Folículo Ovárico/metabolismo , Acetilcolina/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Femenino , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Transporte Iónico/fisiología , Oocitos/metabolismo , Receptores Colinérgicos/metabolismo , Xenopus laevis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA