Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Chem Phys ; 160(14)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38587229

RESUMEN

The compound 2,3-diazabicyclo[2.2.2]oct-2-ene (DBO) is a versatile fluorophore widely used in Förster resonance energy transfer (FRET) spectroscopy studies due to its remarkable sensitivity, enabling precise donor-acceptor distance measurements, even for short peptides. Integrating time-resolved and FRET spectroscopies with molecular dynamics simulations provides a robust approach to unravel the structure and dynamics of biopolymers in a solution. This study investigates the structural behavior of three octapeptide variants: Trp-(Gly-Ser)3-Dbo, Trp-(GlyGly)3-Dbo, and Trp-(SerSer)3-Dbo, where Dbo represents the DBO-containing modified aspartic acid, using molecular dynamics simulations. Glycine- and serine-rich amino acid fragments, common in flexible protein regions, play essential roles in functional properties. Results show excellent agreement between end-to-end distances, orientational factors from simulations, and the available experimental and theoretical data, validating the reliability of the GROMOS force field model. The end-to-end distribution, modeled using three Gaussian distributions, reveals a complex shape, confirmed by cluster analysis highlighting a limited number of significant conformations dominating the peptide landscape. All peptides predominantly adopt a disordered state in the solvent, yet exhibit a compact shape, aligning with the model of disordered polypeptide chains in poor solvents. Conformations show marginal dependence on chain composition, with Ser-only chains exhibiting slightly more elongation. This study enhances our understanding of peptide behavior, providing valuable insights into their structural dynamics in solution.


Asunto(s)
Simulación de Dinámica Molecular , Serina , Glicina , Reproducibilidad de los Resultados , Péptidos/química , Transferencia Resonante de Energía de Fluorescencia/métodos , Solventes
2.
J Chem Phys ; 146(7): 074703, 2017 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-28228017

RESUMEN

Peptides are versatile molecules with applications spanning from biotechnology to nanomedicine. They exhibit a good capability to unbundle carbon nanotubes (CNT) by improving their solubility in water. Furthermore, they are a powerful drug delivery system since they can easily be uptaken by living cells, and their high surface-to-volume ratio facilitates the adsorption of molecules of different natures. Therefore, understanding the interaction mechanism between peptides and CNT is important for designing novel therapeutical agents. In this paper, the mechanisms of the adsorption of antimicrobial peptide Cecropin A-Magainin 2 (CA-MA) on a graphene nanosheet (GNS) and on an ultra-short single-walled CNT are characterized using molecular dynamics simulations. The results show that the peptide coats both GNS and CNT surfaces through preferential contacts with aromatic side chains. The peptide packs compactly on the carbon surfaces where the polar and functionalizable Lys side chains protrude into the bulk solvent. It is shown that the adsorption is strongly correlated to the loss of the peptide helical structure. In the case of the CNT, the outer surface is significantly more accessible for adsorption. Nevertheless when the outer surface is already covered by other peptides, a spontaneous diffusion, via the amidated C-terminus into the interior of the CNT, was observed within 150 ns of simulation time. We found that this spontaneous insertion into the CNT interior can be controlled by the polarity of the entrance rim. For the positively charged CA-MA peptide studied, hydrogenated and fluorinated rims, respectively, hinder and promote the insertion.


Asunto(s)
Antiinfecciosos/química , Péptidos Catiónicos Antimicrobianos/química , Grafito/química , Magaininas/química , Nanoestructuras/química , Nanotubos de Carbono/química , Adsorción , Secuencia de Aminoácidos , Sistemas de Liberación de Medicamentos , Simulación de Dinámica Molecular , Solubilidad , Propiedades de Superficie , Agua/química
3.
Nano Lett ; 16(5): 3142-7, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27028018

RESUMEN

Structural order emerging in the liquid state necessitates a critical degree of anisotropy of the molecules. For example, liquid crystals and Langmuir monolayers require rod- or disc-shaped and long-chain amphiphilic molecules, respectively, to break the isotropic symmetry of liquids. In this Letter we present results from molecular dynamics simulations demonstrating that in two-dimensional liquids, a significantly smaller degree of anisotropy is sufficient to allow structural organization. In fact, the condensed phase of the smallest amphiphilic molecule, methanol, confined between two, or adsorbed on, graphene sheets forms a monolayer characterized by long chains of molecules. Intrachain interactions are dominated by hydrogen bonds, whereas interchain interactions are dispersive. Upon a decrease in density toward a gaslike state, these strings are transformed into rings. The two-dimensional liquid phase of methanol undergoes another transition upon cooling; in this case, the order-disorder transition is characterized by a low-temperature phase in which the hydrogen bond dipoles of neighboring strings adopt an antiparallel orientation.

4.
Appl Microbiol Biotechnol ; 100(1): 227-42, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26403922

RESUMEN

Bacterial phytases have attracted industrial interest as animal feed supplement due to their high activity and sufficient thermostability (required for feed pelleting). We devised an approach named KeySIDE,  an iterative Key-residues interrogation of the wild type with Substitutions Identified in Directed Evolution for improving Yersinia mollaretii phytase (Ymphytase) thermostability by combining key beneficial substitutions and elucidating their individual roles. Directed evolution yielded in a discovery of nine positions in Ymphytase and combined iteratively to identify key positions. The "best" combination (M6: T77K, Q154H, G187S, and K289Q) resulted in significantly improved thermal resistance; the residual activity improved from 35 % (wild type) to 89 % (M6) at 58 °C and 20-min incubation. Melting temperature increased by 3 °C in M6 without a loss of specific activity. Molecular dynamics simulation studies revealed reduced flexibility in the loops located next to helices (B, F, and K) which possess substitutions (Helix-B: T77K, Helix-F: G187S, and Helix-K: K289E/Q). Reduced flexibility in the loops might be caused by strengthened hydrogen bonding network (e.g., G187S and K289E/K289Q) and a salt bridge (T77K). Our results demonstrate a promising approach to design phytases in food research, and we hope that the KeySIDE might become an attractive approach for understanding of structure-function relationships of enzymes.


Asunto(s)
6-Fitasa/genética , 6-Fitasa/metabolismo , Evolución Molecular Dirigida/métodos , Ingeniería de Proteínas/métodos , Yersinia/enzimología , Yersinia/genética , 6-Fitasa/química , Sustitución de Aminoácidos , Estabilidad de Enzimas , Simulación de Dinámica Molecular , Temperatura
5.
Biopolymers ; 103(1): 1-14, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25059842

RESUMEN

Antimicrobial peptides are promising alternative to traditional antibiotics and antitumor drugs for the battle against new antibiotic resistant bacteria strains and cancer maladies. The study of their structural and dynamics properties at physiological conditions can help to understand their stability, delivery mechanisms, and activity in the human body. In this article, we have used molecular dynamics simulations to study the effects of solvent environment, temperature, ions concentration, and peptide concentration on the structural properties of the antimicrobial hybrid peptide Cecropin A-Magainin 2. In TFE/water mixtures, the structure of the peptide retained α-helix contents and an average hinge angle in close agreement with the experimental NMR and CD measurements reported in literature. Compared to the TFE/water mixture, the peptide simulated at the same ionic concentration lost most of its α-helix structure. The increase of peptide concentration at both 300 and 310 K resulted in the peptide aggregation. The peptides in the complex retained the initial N-ter α-helix segment during all the simulation. The α-helix stabilization is further enhanced in the high salt concentration simulations. The peptide aggregation was not observed in TFE/water mixture simulations and, the peptide aggregate, obtained from the water simulation, simulated in the same conditions did dissolve within few tens of nanoseconds. The results of this study provide insights at molecular level on the structural and dynamics properties of the CA-MA peptide at physiological and membrane mimic conditions that can help to better understand its delivery and interaction with biological interfaces.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/química , Iones/química , Péptidos/química , Soluciones/química , Solventes/química , Simulación de Dinámica Molecular , Temperatura , Trifluoroetanol/química
6.
Biopolymers ; 101(3): 197-209, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23754593

RESUMEN

Flavocytochrome P450BM-3 is a soluble bacterial reductase composed of two flavin (FAD/FMN) and one HEME domains. In this article, we have performed molecular dynamics simulations on both the isolated FMN and HEME domains and their crystallographic complex, with the aim to study their binding modes and to garner insight into the interdomain electron transfer (ET) mechanism. The results evidenced an interdomain conformational rearrangement that reduces the average distance between the FMN and HEME cofactors from 1.81 nm, in the crystal structure, to an average value of 1.41±0.09 nm along the simulation. This modification is in agreement with previously proposed hypotheses suggesting that the crystallographic FMN/HEME complex is not in the optimal arrangement for favorable ET rate under physiological conditions. The calculation of the transfer rate along the simulation, using the Pathways Path method, demonstrated the occurrence of seven ET pathways between the two redox centers, with three of them providing ET rates (KET ) comparable with the experimental one. The sampled ET pathways comprise the amino acids N319, L322, F390, K391, P392, F393, A399, C400, and Q403 of the HEME domain and M490 of the FMN domain. The values of KET closer to the experiment were found along the pathways FMN(C7)→F390→K391→P392→HEME(Fe) and FMN(C8)→M490→F393→HEME(Fe). Finally, the analysis of the collective modes of the protein complex evidences a clear correlation of the first two essential modes with the activation of the most effective ET pathways along the trajectory.


Asunto(s)
NADPH-Ferrihemoproteína Reductasa , Oxidación-Reducción , Proteínas Bacterianas/metabolismo , Sitios de Unión , Sistema Enzimático del Citocromo P-450 , Mononucleótido de Flavina , Hemo/química , Modelos Moleculares , Simulación de Dinámica Molecular
7.
Phys Chem Chem Phys ; 16(11): 5093-105, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24476983

RESUMEN

Pluronic based formulations are among the most successful nanomedicines and block-copolymer micelles including drugs that are undergoing phase I/II studies as anticancer agents. Using coarse-grained models, molecular dynamics simulations of large-scale systems, modeling Pluronic micelles interacting with DPPC lipid bilayers, on the µs timescale have been performed. Simulations show, in agreement with experiments, the release of Pluronic chains from the micelle to the bilayer. This release changes the size of the micelle. Moreover, the presence of drug molecules inside the core of the micelle has a strong influence on this process. The picture emerging from the simulations is that the micelle stability is a result of an interplay of drug-micelle core and block-copolymer-bilayer interactions. The equilibrium size of the drug vector shows a strong dependency on the hydrophobicity of the drug molecules embedded in the core of the micelle. In particular, the radius of the micelle shows an abrupt increase in a very narrow range of drug molecule hydrophobicity.


Asunto(s)
Portadores de Fármacos , Membranas Artificiales , Micelas , Nanotecnología , Modelos Teóricos , Simulación de Dinámica Molecular
8.
Chembiochem ; 13(5): 691-9, 2012 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22408062

RESUMEN

Proteases have niche applications in diagnostic kits that use cell lysis and thereby require high resistance towards chaotropic salts and detergents, such as guanidinium chloride (GdmCl) and sodium dodecylsulfate (SDS). Subtilisin E, a well-studied serine protease, was selected to be re-engineered by directed evolution into a "chaophilic" protease that would be resistance to GdmCl and SDS, for application in diagnostic kits. In three iterative rounds of directed evolution, variant SeSaM1-5 (S62I/A153V/G166S/I205V) was generated, with improved activity (330 %) and increased half life in 1 M GdmCl (<2 min to 4.7 h) or in 0.5 % SDS (<2 min to 2.7 h). Saturation mutagenesis at each site in the wild-type subtilisin E revealed that positions 62 and 166 were mainly responsible for increased activity and stability. A double mutant, M2 (S62I/G166M), generated by combination of the best single mutations showed significantly improved kinetic constants; in 2 M GdmCl the K(m) value decreased (29-fold) from 7.31 to 0.25 mM, and the k(cat) values increased (fourfold) from 15 to 61 s(-1) . The catalytic efficiency, k(cat)/K(m), improved dramatically (GdmCl: 247 mM(-1)s(-1) (118-fold); SDS, 179 mM(-1)s(-1) (13-fold)). In addition, the SeSaM1-5 variant showed higher stability in 2.0 % SDS when compared to the wild-type (t(1/2) 54.8 min (>27-fold)). Finally, molecular dynamics simulations of the wild-type subtilisin E showed that Gdm(+) ions could directly interact with active site residues, thereby probably limiting access of the substrate to the catalytic centre.


Asunto(s)
Evolución Molecular Dirigida , Resistencia a Medicamentos/genética , Guanidina/farmacología , Dodecil Sulfato de Sodio/farmacología , Subtilisinas/química , Subtilisinas/metabolismo , Cinética , Modelos Moleculares , Simulación de Dinámica Molecular , Subtilisinas/genética
9.
Inorg Chem ; 51(9): 4894-6, 2012 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-22486233

RESUMEN

We have studied using molecular dynamics simulations the interaction of the dodecaborate anion, B(12)H(12)(2-), and its amino, trimethyl, and triethyl derivatives with water molecules. We found peculiar organization of the water molecules in the first solvation shell with the formation of a dihydrogen bond between the hydrogen atoms of the anions and the hydrogen atoms of the water molecules. The simulations also show that the organization of the hydration shell is strongly influenced by the substituents in the anions. These differences are likely to play an important role in understanding the interaction of the anions with biological systems like membranes and proteins in aqueous environments.

10.
Artículo en Inglés | MEDLINE | ID: mdl-22949185

RESUMEN

Understanding the effects of organic co-solvents on protein structure and function is pivotal to engineering enzymes for biotransformation in non-aqueous solvents. The effects of DMSO on the catalytic activity of cytochrome P450 BM3 have previously been investigated and the importance of Phe87 in its organic co-solvent tolerance was identified. To probe the DMSO inactivation mechanism and the functional role of Phe87 in modulating the organic co-solvent tolerance of P450 BM3, the haem domain (Thr1-Leu455) of the F87A variant was cocrystallized in the presence of 14%(v/v) and 28%(v/v) DMSO. At both DMSO concentrations the protein retained the canonical structure of the P450 haem domain without any sign of partial or global unfolding. Interestingly, a DMSO molecule was found in the active site of both structures, with its O atom pointing towards the haem iron. The orientation of the DMSO molecule indicated a dynamic coordination process that was in competition with the active-site water molecule. The ability of the DMSO molecule to coordinate the haem iron is plausibly the main reason why P450 BM3 is inactivated at elevated DMSO concentrations. The data allowed an interesting comparison with the wild-type structures reported previously. A DMSO molecule was found when the wild-type protein was placed in 28%(v/v) DMSO, in which the DMSO molecule coordinated the haem iron directly via its S atom. Intriguingly, no DMSO molecule was observed at 14%(v/v) DMSO for the wild-type structure. These results suggested that the bulky phenyl side chain of Phe87 protects the haem from being accessed by the DMSO molecule and explains the higher tolerance of the wild-type enzyme towards organic co-solvents compared with its F87A variant.


Asunto(s)
Dominio Catalítico , Sistema Enzimático del Citocromo P-450/química , Dimetilsulfóxido/química , Sistema Enzimático del Citocromo P-450/metabolismo , Humanos , Modelos Moleculares , Especificidad por Sustrato
11.
Appl Microbiol Biotechnol ; 95(2): 405-18, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22159661

RESUMEN

Phytase improves as a feed supplement the nutritional quality of phytate-rich diets (e.g., cereal grains, legumes, and oilseeds) by hydrolyzing indigestible phytate (myo-inositol 1,2,3,4,5,6-hexakis dihydrogen phosphate) and increasing abdominal absorption of inorganic phosphates, minerals, and trace elements. Directed phytase evolution was reported for improving industrial relevant properties such as thermostability (pelleting process) or activity. In this study, we report the cloning, characterization, and directed evolution of the Yersinia mollaretii phytase (Ymphytase). Ymphytase has a tetrameric structure with positive cooperativity (Hill coefficient was 2.3) and a specific activity of 1,073 U/mg which is ∼10 times higher than widely used fungal phytases. High-throughput prescreening methods using filter papers or 384-well microtiter plates were developed. Precise subsequent screening for thermostable and active phytase variants was performed by combining absorbance and fluorescence-based detection system in 96-well microtiter plates. Directed evolution yielded after mutant library generation (SeSaM method) and two-step screening (in total ∼8,400 clones) a phytase variant with ∼20% improved thermostability (58°C for 20 min; residual activity wild type ∼34%; variant ∼53%) and increased melting temperature (1.5°C) with a slight loss of specific activity (993 U/mg).


Asunto(s)
6-Fitasa/genética , 6-Fitasa/metabolismo , Evolución Molecular Dirigida , Yersinia/enzimología , 6-Fitasa/química , Clonación Molecular , Estabilidad de Enzimas , Ensayos Analíticos de Alto Rendimiento , Multimerización de Proteína , Temperatura
12.
J Chem Phys ; 136(12): 124901, 2012 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-22462889

RESUMEN

In this paper, the conformation and dynamics properties of polyethylene oxide (PEO) and polypropylene oxide (PPO) polymer chains at 298 K have been studied in the melt and at infinite dilution condition in water, methanol, chloroform, carbon tetrachloride, and n-heptane using molecular dynamics simulations. The calculated density of PEO melt with chain lengths of n = 2, 3, 4, 5 and, for PPO, n = 7 are in good agreement with the available experimental data. The conformational properties of PEO and PPO show an increasing gauche preference for the O-C-C-O dihedral in the following order water>methanol>chloroform>carbon tetrachloride = n-heptane. On the contrary, the preference for trans conformation has a maximum in carbon tetrachloride and n-heptane followed in the order by chloroform, methanol, and water. The PEO conformational preferences are in qualitative agreement with results of NMR studies. PEO chains formed different types of hydrogen bonds with polar solvent molecules. In particular, the occurrence of bifurcated hydrogen bonding in chloroform was also observed. Radii of gyration of PEO chains of length larger than n = 9 monomers showed a good agreement with light scattering data in water and in methanol. For the shorter chains the observed deviations are probably due to the enhanced hydrophobic effects caused by the terminal methyl groups. For PEO the fitting of end-to-end distance distributions with the semi-flexible chain model at 298 K provided persistence lengths of 0.375 and 0.387 nm in water and methanol, respectively. Finally, the radius of gyration of Pluronic P85 turned out to be 2.25 ± 0.4 nm at 293 K in water in agreement with experimental data.


Asunto(s)
Simulación de Dinámica Molecular , Polietilenglicoles/química , Polipropilenos/química , Agua/química , Tetracloruro de Carbono/química , Cloroformo/química , Heptanos/química , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Metanol/química , Modelos Químicos , Estructura Molecular
13.
J Colloid Interface Sci ; 605: 286-295, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34329980

RESUMEN

HYPOTHESIS: We developed a geometrical model to determine the theoretical maximum number of proteins that can pack as a monolayer surrounding a spherical nanoparticle. We applied our new model to study the adsorption of receptor binding domain (RBD) of the SARS-CoV-2 spike protein to silica nanoparticles. Due to its abundance and extensive use in manufacturing, silica represents a reservoir where the virus can accumulate. It is therefore important to study the adsorption and the persistence of viral components on inanimate surfaces. EXPERIMENTS: We used previously published datasets of nanoparticle-adsorbed proteins to validate the new model. We then used integrated experimental methods and Molecular Dynamics (MD) simulations to characterise binding of the RBD to silica nanoparticles and the effect of such binding on RBD structure. FINDINGS: The new model showed excellent fit with existing datasets and, combined to new RBD-silica nanoparticles binding data, revealed a surface occupancy of 32% with respect to the maximum RBD packing theoretically achievable. Up to 25% of RBD's secondary structures undergo conformational changes as a consequence of adsorption onto silica nanoparticles. Our findings will help developing a better understanding of the principles governing interaction of proteins with surfaces and can contribute to control the spread of SARS-CoV-2 through contaminated objects.


Asunto(s)
COVID-19 , Nanopartículas , Adsorción , Humanos , Unión Proteica , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus
14.
Chembiochem ; 12(10): 1595-601, 2011 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-21671328

RESUMEN

Generating high-quality mutant libraries in which each amino acid is equally targeted and substituted in a chemically diverse manner is crucial to obtain improved variants in small mutant libraries. The sequence saturation mutagenesis method (SeSaM-Tv(+) ) offers the opportunity to generate such high-quality mutant libraries by introducing consecutive mutations and by enriching transversions. In this study, automated gel electrophoresis, real-time quantitative PCR, and a phosphorimager quantification system were developed and employed to optimize each step of previously reported SeSaM-Tv(+) method. Advancements of the SeSaM-Tv(+) protocol and the use of a novel DNA polymerase quadrupled the number of transversions, by doubling the fraction of consecutive mutations (from 16.7 to 37.1 %). About 33 % of all amino acid substitutions observed in a model library are rarely introduced by epPCR methods, and around 10 % of all clones carried amino acid substitutions that are unobtainable by epPCR.


Asunto(s)
Evolución Molecular Dirigida/métodos , Mutagénesis , Proteínas/genética , Biblioteca de Genes , Reacción en Cadena de la Polimerasa
15.
Phys Chem Chem Phys ; 13(25): 11864-71, 2011 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-21623430

RESUMEN

Herein, we present a combined experimental and computational study of liquid phenyltrimethoxysilane. A femtosecond time-resolved optical Kerr effect experiment has been performed to study the rotational diffusion of the molecule. A new all-atoms molecular model of the compound, based on the OPLS force field, has been developed to reproduce the rotational diffusion time constant and other physical and dynamic properties available in the literature. The density obtained from the simulations is 1074 ± 4 kg m(-3), which is within 1% of the experimental value of 1062 kg m(-3). The viscosity from the simulations is 1.6 ± 0.1 mPa s while the experimental value is 2.1 mPa s. The average bulk dipole moment of 1.8 ± 0.5 Debye obtained from the simulation matches the experimental value of 1.77 Debye. The average relative dielectric constant from the simulations is 3.86 ± 0.04, which is within 13% of the experimental value (4.4). The rotational diffusion time of the dipole moment obtained from the simulations is 20.39 ± 0.06 ps, which is in excellent agreement with the experimental value of 20 ± 1 ps obtained from our measurements. The new model has also been used to calculate structural and dynamic properties of the molecule not yet determined experimentally.

16.
J Chem Phys ; 135(16): 164501, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-22047246

RESUMEN

Herein, we report a comparative modelling study of 1,2-dimethoxyethane (DME) and 1,2-dimethoxypropane (DMP) at 298 K and 318 K in the liquid state, water mixtures, and at infinite dilution condition in water, methanol, carbon tetrachloride, and n-heptane. Both DME and DMP are united-atom models compatible with GROMOS∕OPLS force fields. Calculated thermodynamic and structural properties of the pure DME and DMP liquids resulted in excellent agreement with the experimental data. In aqueous solutions, densities, diffusion coefficients, and concentration dependent conformers of DME, were in agreement with experimental data. The calculated free energy of solvation (ΔG(hyd)) at 298 K is equal to -22.1 ± 0.8 kJ mol(-1) in good agreement with the experimental value of 20.2 kJ mol(-1). In addition, the free energy of solvation of DME in non-aqueous solvents follows the trend methanol ≈ water < carbon tetrachloride < n-heptane, consistently with the dielectric constant of the solvents. On contrary, the presence of an extra methyl group on chiral carbon makes DMP less soluble than DME in water (ΔG(hyd) = -16.0 ± 1.1 kJ mol(-1)) but more soluble in non-polar solvents as n-heptane. Finally, for the DMP the chiral discrimination of the two enantiomers was calculated as solvation free energy difference of one DMP isomer in the solution of the other. The obtained value of ΔΔG(RS) = -3.7 ± 1.4 kJ mol(-1) indicates a net chiral discrimination of the two enantiomers.

17.
Chembiochem ; 11(16): 2294-301, 2010 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-20954230

RESUMEN

Arginine deiminase (ADI, EC 3.5.3.6) is a potential antitumor drug for the treatment of arginine-auxotrophic tumors such as hepatocellular carcinomas (HCCs) and melanomas, and studies on human lymphatic leukemia cell lines have confirmed that ADI has antiangiogenic activity. Recent studies showed that a combination of taxane and ADI-PEG20, which induces caspase-independent apoptosis, is more effective than taxane monotherapy for prostate cancer. The main limitation of ADI from Pseudomonas plecoglossicida (PpADI) and of many other ADI enzymes lies in their pH-dependent activity profile. PpADI has a pH optimum at 6.5 and a pH shift from 6.5 to 7.5 results in an ∼80 % activity drop (the pH of human plasma is 7.35 to 7.45). In 2010, we reported a proof of concept for ADI engineering by directed evolution that resulted in variant M2 (K5T/D44E/H404R). M2 has a pH optimum of pH 7.0, a fourfold higher k(cat) value than the wild-type PpADI (pH 7.4, 0.5 M phosphate buffer), and an increased K(m) value for substrate arginine. In our latest work, variants M5 (K5T/D38H/D44E/A128T/H404R) and M6 (K5T/D38H/D44E/A128T/E296K/H404R) were generated by directed evolution by employing PBS buffer (pH 7.4), which mimics physiological conditions. The S(0.5) value of parent M3 (K5T/D44E/A128T/H404R) decreased from 2.01 to 1.48 mM (M5) and 0.81 mM (M6). The S(0.5) value of M6 (0.81 mM) is lower than that of wild-type PpADI (1.30 mM); the k(cat) values improved from 0.18 s(-1) (wild-type PpADI) to 17.56 s(-1) (M5, 97.6-fold) and 11.64 s(-1) (M6, 64.7-fold).


Asunto(s)
Antineoplásicos/química , Hidrolasas/química , Sustitución de Aminoácidos , Línea Celular Tumoral , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/genética , Hidrolasas/metabolismo , Cinética , Mutagénesis Sitio-Dirigida , Neoplasias/tratamiento farmacológico , Ingeniería de Proteínas , Estructura Terciaria de Proteína , Pseudomonas/enzimología
18.
Chembiochem ; 11(5): 691-7, 2010 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-20157910

RESUMEN

Arginine deiminase (ADI; EC 3.5.3.6) has been studied as a potential antitumor drug for the treatment of arginine-auxotrophic tumors, such as hepatocellular carcinomas (HCCs) and melanomas. Studies with human lymphatic leukemia cell lines confirmed that ADI is an antiangiogenic agent for treating leukemia. The main limitation of ADI from Pseudomonas plecoglossicida (PpADI) lies in its pH-dependent activity profile, its pH optimum is at 6.5. A pH shift from 6.5 to 7.5 results in an approximately 80 % drop in activity. (The pH of human plasma is 7.35 to 7.45.) In order to shift the PpADI pH optimum, a directed-evolution protocol based on an adapted citrulline-screening protocol in microtiter-plate format was developed and validated. A proof of concept for ADI engineering resulted in a pH optimum of pH 7.0 and increased resistance under physiological and slightly alkaline conditions. At pH 7.4, variant M2 (K5T/D44E/H404R) is four times faster than the wild-type PpADI and retains approximately 50 % of its activity relative to its pH optimum, compared to approximately 10 % in the case of the wild-type PpADI.


Asunto(s)
Antineoplásicos/química , Evolución Molecular Dirigida , Hidrolasas/genética , Sustitución de Aminoácidos , Inhibidores de la Angiogénesis/uso terapéutico , Antineoplásicos/metabolismo , Antineoplásicos/uso terapéutico , Citrulina/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Hidrolasas/química , Hidrolasas/metabolismo , Cinética , Leucemia/tratamiento farmacológico , Mutagénesis Sitio-Dirigida , Ingeniería de Proteínas , Pseudomonas/enzimología
19.
Methods Mol Biol ; 2118: 177-197, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32152980

RESUMEN

This chapter contributes a short tutorial on the preparation of molecular dynamics (MD) simulations for a peptide in solution at the interface of an uncoated gold nanosurface. Specifically, the step-by-step procedure will give guidance to set up the simulation of a 16 amino acid long antimicrobial peptide on a gold layer using the program Gromacs for MD simulations.


Asunto(s)
Biología Computacional/métodos , Oro/química , Proteínas Citotóxicas Formadoras de Poros/química , Modelos Moleculares , Simulación de Dinámica Molecular , Nanoestructuras , Soluciones
20.
J Phys Chem B ; 123(9): 1998-2004, 2019 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-30744380

RESUMEN

Citrate synthase plays a fundamental role in the metabolic cycle of the cell. Its catalytic mechanism is complex involving the binding of two substrates that cause a domain movement. In this paper, we used classical molecular dynamics simulations and umbrella-sampling simulations to determine the potential of mean force along a reaction coordinate for the domain movement in ligand-free citrate synthase from pig ( Sus scrofa). The results show that, at 293 K, the closed-domain conformation has a ∼4 kb T higher energy than the open-domain conformation. In a simple two-state model, this difference means that the enzyme spends 98% of the time in the open-domain conformation ready to receive the substrate, oxaloacetate, rather than the closed-domain conformation where the binding site would be inaccessible to the substrate. Given that experimental evidence indicates that the binding of oxaloacetate induces at least partial closure, this would imply an induced-fit mechanism which we argue is applicable to all enzymes with a functional domain movement for reasons of catalytic efficiency. A barrier of 4 kb T gives an estimation of the mean first passage time in the range 1-10 µs.


Asunto(s)
Citrato (si)-Sintasa/química , Animales , Simulación de Dinámica Molecular , Conformación Proteica , Dominios Proteicos , Porcinos , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA