Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(4): 800-814.e18, 2017 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-28802047

RESUMEN

Improved methods for manipulating and analyzing gene function have provided a better understanding of how genes work during organ development and disease. Inducible functional genetic mosaics can be extraordinarily useful in the study of biological systems; however, this experimental approach is still rarely used in vertebrates. This is mainly due to technical difficulties in the assembly of large DNA constructs carrying multiple genes and regulatory elements and their targeting to the genome. In addition, mosaic phenotypic analysis, unlike classical single gene-function analysis, requires clear labeling and detection of multiple cell clones in the same tissue. Here, we describe several methods for the rapid generation of transgenic or gene-targeted mice and embryonic stem (ES) cell lines containing all the necessary elements for inducible, fluorescent, and functional genetic mosaic (ifgMosaic) analysis. This technology enables the interrogation of multiple and combinatorial gene function with high temporal and cellular resolution.


Asunto(s)
Marcación de Gen/métodos , Animales , Línea Celular , Células Madre Embrionarias , Ratones , Ratones Transgénicos
2.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911327

RESUMEN

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Asunto(s)
Células Endoteliales/metabolismo , Glucólisis , Neovascularización Fisiológica , Fosfofructoquinasa-2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/citología , Femenino , Eliminación de Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/genética , Seudópodos/metabolismo , Pez Cebra
3.
Nucleic Acids Res ; 52(13): e56, 2024 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-38850155

RESUMEN

Methods for modifying gene function at high spatiotemporal resolution in mice have revolutionized biomedical research, with Cre-loxP being the most widely used technology. However, the Cre-loxP technology has several drawbacks, including weak activity, leakiness, toxicity, and low reliability of existing Cre-reporters. This is mainly because different genes flanked by loxP sites (floxed) vary widely in their sensitivity to Cre-mediated recombination. Here, we report the generation, validation, and utility of iSuRe-HadCre, a new dual Cre-reporter and deleter mouse line that avoids these drawbacks. iSuRe-HadCre achieves this through a novel inducible dual-recombinase genetic cascade that ensures that cells expressing a fluorescent reporter had only transient Cre activity, that is nonetheless sufficient to effectively delete floxed genes. iSuRe-HadCre worked reliably in all cell types and for the 13 floxed genes tested. This new tool will enable the precise, efficient, and trustworthy analysis of gene function in entire mouse tissues or in single cells.


Asunto(s)
Integrasas , Animales , Integrasas/genética , Integrasas/metabolismo , Ratones , Genes Reporteros , Recombinación Genética
4.
Proc Natl Acad Sci U S A ; 120(15): e2216934120, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-37011188

RESUMEN

Cells continuously sense external forces from their microenvironment, the extracellular matrix (ECM). In turn, they generate contractile forces, which stiffen and remodel this matrix. Although this bidirectional mechanical exchange is crucial for many cell functions, it remains poorly understood. Key challenges are that the majority of available matrices for such studies, either natural or synthetic, are difficult to control or lack biological relevance. Here, we use a synthetic, yet highly biomimetic hydrogel based on polyisocyanide (PIC) polymers to investigate the effects of the fibrous architecture and the nonlinear mechanics on cell-matrix interactions. Live-cell rheology was combined with advanced microscopy-based approaches to understand the mechanisms behind cell-induced matrix stiffening and plastic remodeling. We demonstrate how cell-mediated fiber remodeling and the propagation of fiber displacements are modulated by adjusting the biological and mechanical properties of this material. Moreover, we validate the biological relevance of our results by demonstrating that cellular tractions in PIC gels develop analogously to those in the natural ECM. This study highlights the potential of PIC gels to disentangle complex bidirectional cell-matrix interactions and to improve the design of materials for mechanobiology studies.


Asunto(s)
Matriz Extracelular , Hidrogeles , Matriz Extracelular/fisiología , Comunicación Celular
5.
Mol Cell ; 65(5): 885-899.e6, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28238652

RESUMEN

Loss of ER Ca2+ homeostasis triggers endoplasmic reticulum (ER) stress and drives ER-PM contact sites formation in order to refill ER-luminal Ca2+. Recent studies suggest that the ER stress sensor and mediator of the unfolded protein response (UPR) PERK regulates intracellular Ca2+ fluxes, but the mechanisms remain elusive. Here, using proximity-dependent biotin identification (BioID), we identified the actin-binding protein Filamin A (FLNA) as a key PERK interactor. Cells lacking PERK accumulate F-actin at the cell edges and display reduced ER-PM contacts. Following ER-Ca2+ store depletion, the PERK-FLNA interaction drives the expansion of ER-PM juxtapositions by regulating F-actin-assisted relocation of the ER-associated tethering proteins Stromal Interaction Molecule 1 (STIM1) and Extended Synaptotagmin-1 (E-Syt1) to the PM. Cytosolic Ca2+ elevation elicits rapid and UPR-independent PERK dimerization, which enforces PERK-FLNA-mediated ER-PM juxtapositions. Collectively, our data unravel an unprecedented role of PERK in the regulation of ER-PM appositions through the modulation of the actin cytoskeleton.


Asunto(s)
Citoesqueleto de Actina/enzimología , Actinas/metabolismo , Membrana Celular/enzimología , Estrés del Retículo Endoplásmico , Retículo Endoplásmico/enzimología , Filaminas/metabolismo , eIF-2 Quinasa/metabolismo , Animales , Calcio/metabolismo , Señalización del Calcio , Filaminas/genética , Células HEK293 , Células HeLa , Humanos , Ratones , Proteínas de Neoplasias/metabolismo , Multimerización de Proteína , Transporte de Proteínas , Interferencia de ARN , Transducción de Señal , Molécula de Interacción Estromal 1/metabolismo , Sinaptotagmina I/metabolismo , Factores de Tiempo , Transfección , Respuesta de Proteína Desplegada , eIF-2 Quinasa/genética
6.
Arch Biochem Biophys ; 760: 110121, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-39151873

RESUMEN

We aimed to study the influence of preventing methemoglobin (metHb) formation, in the roles of peroxiredoxin 2 (Prx2), glutathione peroxidase (GPx) and catalase (CAT) on the erythrocyte antioxidant defense system. We performed in vitro assays using healthy erythrocytes, with and without inhibition of autoxidation of Hb (saturation with carbon monoxide), followed by H2O2-induced oxidative stress. We assessed the enzyme activities and amounts of CAT, GPx and Prx2 in the red blood cell (RBC) cytosol and membrane and several biomarkers of oxidative stress, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. When autoxidation of Hb was inhibited, no significant changes were found for GPx and CAT; Prx2 was observed only in the monomeric form in the cytosol and none bound to the membrane. Blocking the function of Hb as a pseudo-peroxidase does not seem to have an impact on the function of the RBC peroxidases.


Asunto(s)
Antioxidantes , Catalasa , Eritrocitos , Glutatión Peroxidasa , Metahemoglobina , Estrés Oxidativo , Peroxirredoxinas , Humanos , Metahemoglobina/metabolismo , Eritrocitos/metabolismo , Peroxirredoxinas/metabolismo , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Catalasa/metabolismo , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Citosol/metabolismo , Masculino , Adulto
7.
Nature ; 561(7721): 63-69, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30158707

RESUMEN

Glutamine synthetase, encoded by the gene GLUL, is an enzyme that converts glutamate and ammonia to glutamine. It is expressed by endothelial cells, but surprisingly shows negligible glutamine-synthesizing activity in these cells at physiological glutamine levels. Here we show in mice that genetic deletion of Glul in endothelial cells impairs vessel sprouting during vascular development, whereas pharmacological blockade of glutamine synthetase suppresses angiogenesis in ocular and inflammatory skin disease while only minimally affecting healthy adult quiescent endothelial cells. This relies on the inhibition of endothelial cell migration but not proliferation. Mechanistically we show that in human umbilical vein endothelial cells GLUL knockdown reduces membrane localization and activation of the GTPase RHOJ while activating other Rho GTPases and Rho kinase, thereby inducing actin stress fibres and impeding endothelial cell motility. Inhibition of Rho kinase rescues the defect in endothelial cell migration that is induced by GLUL knockdown. Notably, glutamine synthetase palmitoylates itself and interacts with RHOJ to sustain RHOJ palmitoylation, membrane localization and activation. These findings reveal that, in addition to the known formation of glutamine, the enzyme glutamine synthetase shows unknown activity in endothelial cell migration during pathological angiogenesis through RHOJ palmitoylation.


Asunto(s)
Células Endoteliales/enzimología , Células Endoteliales/patología , Glutamato-Amoníaco Ligasa/metabolismo , Glutamina/biosíntesis , Neovascularización Patológica , Actinas/metabolismo , Animales , Movimiento Celular , Células Endoteliales/metabolismo , Femenino , Glutamato-Amoníaco Ligasa/deficiencia , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/fisiología , Células HEK293 , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Lipoilación , Ratones , Ácido Palmítico/metabolismo , Procesamiento Proteico-Postraduccional , Fibras de Estrés/metabolismo , Proteínas de Unión al GTP rho/química , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo
8.
Nucleic Acids Res ; 50(17): e100, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-35716125

RESUMEN

Interactions between epigenetic readers and histone modifications play a pivotal role in gene expression regulation and aberrations can enact etiopathogenic roles in both developmental and acquired disorders like cancer. Typically, epigenetic interactions are studied by mass spectrometry or chromatin immunoprecipitation sequencing. However, in these methods, spatial information is completely lost. Here, we devise an expansion microscopy based method, termed Expansion Microscopy for Epigenetics or ExEpi, to preserve spatial information and improve resolution. We calculated relative co-localization ratios for two epigenetic readers, lens epithelium derived growth factor (LEDGF) and bromodomain containing protein 4 (BRD4), with marks for heterochromatin (H3K9me3 and H3K27me3) and euchromatin (H3K36me2, H3K36me3 and H3K9/14ac). ExEpi confirmed their preferred epigenetic interactions, showing co-localization for LEDGF with H3K36me3/me2 and for BRD4 with H3K9/14ac. Moreover addition of JQ1, a known BET-inhibitor, abolished BRD4 interaction with H3K9/14ac with an IC50 of 137 nM, indicating ExEpi could serve as a platform for epigenetic drug discovery. Since ExEpi retains spatial information, the nuclear localization of marks and readers was determined, which is one of the main advantages of ExEpi. The heterochromatin mark, H3K9me3, is located in the nuclear rim whereas LEDGF co-localization with H3K36me3 and BRD4 co-localization with H3K9/14ac occur further inside the nucleus.


Asunto(s)
Código de Histonas , Análisis de la Célula Individual , Epigénesis Genética , Eucromatina , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo , Microscopía , Proteínas Nucleares/metabolismo , Factores de Transcripción/metabolismo
9.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38396832

RESUMEN

The antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and peroxiredoxin 2 (Prx2) are particularly important in erythroid cells. Reticulocytes and other erythroid precursors may adapt their biosynthetic mechanisms to cell defects or to changes in the bone marrow environment. Our aim was to perform a comparative study of the mRNA levels of CAT, GPX1, PRDX2 and SOD1 in reticulocytes from healthy individuals and from patients with hereditary spherocytosis (HS), sickle cell disease (SCD) and ß-thalassemia (ß-thal), and to study the association between their transcript levels and the reticulocyte maturity indices. In controls, the enzyme mRNA levels were significantly correlated with reticulocyte maturity indices for all genes except for SOD1. HS, SCD and ß-thal patients showed younger reticulocytes, with higher transcript levels of all enzymes, although with different patterns. ß-thal and HS showed similar reticulocyte maturity, with different enzyme mRNA levels; SCD and HS, with different reticulocyte maturity, presented similar enzyme mRNA levels. Our data suggest that the transcript profile for these antioxidant enzymes is not entirely related to reticulocyte maturity; it appears to also reflect adaptive mechanisms to abnormal erythropoiesis and/or to altered erythropoietic environments, leading to reticulocytes with distinct antioxidant potential according to each anemia.


Asunto(s)
Anemia de Células Falciformes , Esferocitosis Hereditaria , Talasemia beta , Humanos , Reticulocitos , Talasemia beta/genética , Antioxidantes , ARN Mensajero/genética , Superóxido Dismutasa-1 , Esferocitosis Hereditaria/genética , Anemia de Células Falciformes/genética
10.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38612881

RESUMEN

Gadolinium-based contrast agents (GBCAs) have been used for more than 30 years to improve magnetic resonance imaging, a crucial tool for medical diagnosis and treatment monitoring across multiple clinical settings. Studies have shown that exposure to GBCAs is associated with gadolinium release and tissue deposition that may cause short- and long-term toxicity in several organs, including the kidney, the main excretion organ of most GBCAs. Considering the increasing prevalence of chronic kidney disease worldwide and that most of the complications following GBCA exposure are associated with renal dysfunction, the mechanisms underlying GBCA toxicity, especially renal toxicity, are particularly important. A better understanding of the gadolinium mechanisms of toxicity may contribute to clarify the safety and/or potential risks associated with the use of GBCAs. In this work, a review of the recent literature concerning gadolinium and GBCA mechanisms of toxicity was performed.


Asunto(s)
Líquidos Corporales , Medios de Contraste , Medios de Contraste/efectos adversos , Gadolinio/toxicidad , Riñón/diagnóstico por imagen , Imagen por Resonancia Magnética
11.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38542300

RESUMEN

Worldwide, the number of elderly individuals receiving chronic hemodialysis is rising. The aim of our study was to evaluate several clinical and analytical biomarkers in chronically dialyzed patients and analyze how they change with age. A cross-sectional study was performed by evaluating 289 end-stage renal disease patients undergoing dialysis. We evaluated the hemogram, adipokines, the lipid profile, and several markers related to inflammation, endothelial function/fibrinolysis, nutrition, iron metabolism, and cardiac and renal fibrosis. Clinical data and dialysis efficacy parameters were obtained from all patients. The relationships between studied biomarkers and age were assessed by a statistical comparison between younger (adults with age < 65 years) and older (age ≥ 65 years) patients and by performing regression analysis. Participants presented a mean age of 68.7 years (±13.6), with 66.8% (n = 193) being classified as older. Compared to younger patients, older patients presented the following: (a) significantly lower values of diastolic blood pressure (DBP) and ultrafiltration volume; (b) lower levels of phosphorus, uric acid, creatinine, and albumin; and (c) higher circulating concentrations of tissue-type plasminogen activator (tPA), D-dimer, interleukin-6, leptin, N-terminal pro B-type natriuretic peptide, and tissue inhibitor of metalloproteinase-1. In the multiple linear regression analysis, DBP values, tPA, phosphorus, and D-dimer levels were independently associated with the age of patients (standardized betas: -0.407, 0.272, -0.230, and 0.197, respectively; p < 0.001 for all), demonstrating relevant changes in biomarkers with increasing age at cardiovascular and nutritional levels. These findings seem to result from crosstalk mechanisms between aging and chronic kidney disease.


Asunto(s)
Fallo Renal Crónico , Inhibidor Tisular de Metaloproteinasa-1 , Adulto , Humanos , Anciano , Estudios Transversales , Diálisis Renal , Fallo Renal Crónico/complicaciones , Biomarcadores , Fósforo
12.
Dev Biol ; 486: 26-43, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35337795

RESUMEN

The formation of appropriately patterned blood vessel networks requires endothelial cell migration and proliferation. Signaling through the Vascular Endothelial Growth Factor A (VEGFA) pathway is instrumental in coordinating these processes. mRNA splicing generates short (diffusible) and long (extracellular matrix bound) Vegfa isoforms. The differences between these isoforms in controlling cellular functions are not understood. In zebrafish, vegfaa generates short and long isoforms, while vegfab only generates long isoforms. We found that mutations in vegfaa had an impact on endothelial cell (EC) migration and proliferation. Surprisingly, mutations in vegfab more strongly affected EC proliferation in distinct blood vessels, such as intersegmental blood vessels in the zebrafish trunk and central arteries in the head. Analysis of downstream signaling pathways revealed no change in MAPK (ERK) activation, while inhibiting PI3 kinase signaling phenocopied vegfab mutant phenotypes in affected blood vessels. Together, these results suggest that extracellular matrix bound Vegfa might act through PI3K signaling to control EC proliferation in a distinct set of blood vessels during angiogenesis.


Asunto(s)
Factor A de Crecimiento Endotelial Vascular , Pez Cebra , Animales , Proliferación Celular , Neovascularización Fisiológica/genética , Fenotipo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Pez Cebra/genética , Pez Cebra/metabolismo
13.
Anal Chem ; 95(20): 8045-8053, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37172070

RESUMEN

The adverse health effects of ambient carbonaceous particles (CPs) such as carbon black (CB), black carbon (BC), and brown carbon (BrC) are becoming more evident and depend on their composition and emission source. Therefore, identifying and quantifying these particles in biological samples are important to better understand their toxicity. Here, we report the development of a nonlinear optical approach for the identification of CPs such as CB and BrC using imaging conditions compatible with biomedical samples. The unique visible light fingerprint of CB and BrC nanoparticles (NPs) upon illumination with a femtosecond (fs) pulsed laser at 1300 nm excitation wavelength is an effective approach for their identification in their biological context. The emission from spectral features of these CPs was investigated with time-domain fluorescence lifetime imaging (FLIM) to further support their identification. This study is performed for different types of CPs embedded in agarose gel as well as in in vitro mammalian cells. The unique nonlinear emissive behavior of CP NPs used for their label-free identification is further complementary with fluorophores typically used for specific staining of biological samples thus providing the relevant bio-context.


Asunto(s)
Luz , Microscopía Óptica no Lineal , Aerosoles/análisis , Carbono , Imagen Óptica , Hollín
14.
Arch Biochem Biophys ; 739: 109569, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36918042

RESUMEN

Catalase (CAT), glutathione peroxidase (GPx) and Prx2 (peroxiredoxin 2) are the main antioxidant enzymatic defenses of erythrocytes. They prevent and minimize oxidative injuries in red blood cell (RBC) components, which are continuously exposed to oxidative stress (OS). The crosstalk between CAT, GPx and Prx2 is still not fully disclosed, as well as why these typically cytoplasmic enzymes bind to the RBC membrane. Our aim was to understand the interplay between CAT, GPx and Prx2 in the erythrocyte's cytosol and membrane. Under specific (partial) inhibition of each enzyme and increasing H2O2-induced OS conditions, we evaluated the enzyme activities and amounts, the binding of CAT, GPx and Prx2 to RBC membrane, and biomarkers of OS, such as the reduced and oxidized glutathione levels, thiobarbituric acid reactive substances (TBARS) levels, membrane bound hemoglobin and total antioxidant status. Our results support the hypothesis that when high levels of H2O2 get within the erythrocyte, CAT is the main player in the antioxidant protection of the cell, while Prx2 and GPx have a less striking role. Moreover, we found that CAT, appears to have more importance in the antioxidant protection of cytoplasm than of the membrane components, since when the activity of CAT is disturbed, GPx and Prx2 are both activated in the cytosol and mobilized to the membrane. In more severe OS conditions, the antioxidant activity of GPx is more significant at the membrane, as we found that GPx moves from the cytosol to the membrane, probably to protect it from lipid peroxidation.


Asunto(s)
Antioxidantes , Peroxirredoxinas , Catalasa/metabolismo , Antioxidantes/metabolismo , Glutatión Peroxidasa/metabolismo , Peroxirredoxinas/metabolismo , Peróxido de Hidrógeno/metabolismo , Citosol/metabolismo , Eritrocitos/metabolismo , Estrés Oxidativo , Peroxidación de Lípido , Superóxido Dismutasa/metabolismo
15.
Pediatr Res ; 93(7): 1856-1864, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36272998

RESUMEN

BACKGROUND: At birth, human neonates are more likely to develop cholestasis and oxidative stress due to immaturity or other causes. We aimed to search for a potential association between bile acids profile, redox status, and type of diet in healthy infants. METHODS: A cross-sectional, exploratory study enrolled 2-month-old full-term infants (n = 32). We measured plasma bile acids (total and conjugated), and red blood cell (RBC) oxidative stress biomarkers. The type of diet (breastfeeding, mixed, formula) was used as an independent variable. RESULTS: Plasma total bile acids medium value was 14.80 µmol/L (IQR: 9.25-18.00). The plasma-conjugated chenodeoxycholic acid percentage (CDCA%) correlated significantly and negatively with RBCs membrane-bound hemoglobin percentage (MBH%) (r = -0.635, p < 0.01) and with RBC-oxidized glutathione (r = -0.403, p < 0.05) levels. RBC oxidative stress biomarkers (especially MBH%) were predictors of conjugated CDCA%, and this predictive ability was enhanced when adjusted for the type of diet (MBH, r = 0.452, p < 0.001). CONCLUSIONS: Our data suggest that the bile acid profile might play a role in the regulation of redox status (or vice versa) in early postnatal life. Eventually, the type of diet may have some impact on this process. IMPACT: The conjugated CDCA% in plasma is negatively correlated with biomarkers of RBC oxidative stress in healthy infants. Specific biomarkers of RBC oxidative stress (e.g. MBH, GSH, GSSG) may be promising predictors of conjugated CDCA% in plasma. The type of diet may influence the predictive ability of hit RBC oxidative stress biomarkers (e.g. MBH, GSH, GSSG). Our findings suggest a link between plasma bile acids profile and the RBC redox status in healthy infants, eventually modulated by the type of diet. The recognition of this link may contribute to the development of preventive and therapeutic strategies for neonatal cholestasis.


Asunto(s)
Ácidos y Sales Biliares , Colestasis , Femenino , Humanos , Lactante , Recién Nacido , Disulfuro de Glutatión , Estudios Transversales , Oxidación-Reducción , Ácido Quenodesoxicólico , Biomarcadores , Estrés Oxidativo
16.
Cell Mol Life Sci ; 79(11): 540, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-36197517

RESUMEN

Glycine receptors (GlyRs) are ligand-gated pentameric chloride channels in the central nervous system. GlyR-α3 is a possible target for chronic pain treatment and temporal lobe epilepsy. Alternative splicing into K or L variants determines the subcellular fate and function of GlyR-α3, yet it remains to be shown whether its different splice variants can functionally co-assemble, and what the properties of such heteropentamers would be. Here, we subjected GlyR-α3 to a combined fluorescence microscopy and electrophysiology analysis. We employ masked Pearson's and dual-color spatiotemporal correlation analysis to prove that GlyR-α3 splice variants heteropentamerize, adopting the mobility of the K variant. Fluorescence-based single-subunit counting experiments revealed a variable and concentration ratio dependent hetero-stoichiometry. Via cell-attached single-channel electrophysiology we show that heteropentamers exhibit currents in between those of K and L variants. Our data are compatible with a model where α3 heteropentamerization fine-tunes mobility and activity of GlyR-α3 channels, which is important to understand and tackle α3 related diseases.


Asunto(s)
Receptores de Glicina , Transmisión Sináptica , Empalme Alternativo/genética , Ligandos , Mutación , Receptores de Glicina/genética
17.
Br J Cancer ; 126(11): 1604-1615, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35347323

RESUMEN

BACKGROUND: Liver metastasis is the primary cause of colorectal cancer (CRC)-associated death. Aryl-hydrocarbon receptor-interacting protein (AIP), a putative positive intermediary in aryl-hydrocarbon receptor-mediated signalling, is overexpressed in highly metastatic human KM12SM CRC cells and other highly metastatic CRC cells. METHODS: Meta-analysis and immunohistochemistry were used to assess the relevance of AIP. Cellular functions and signalling mechanisms mediated by AIP were assessed by gain-of-function experiments and in vitro and in vivo experiments. RESULTS: A significant association of high AIP expression with poor CRC patients' survival was observed. Gain-of-function and quantitative proteomics experiments demonstrated that AIP increased tumorigenic and metastatic properties of isogenic KM12C (poorly metastatic) and KM12SM (highly metastatic to the liver) CRC cells. AIP overexpression dysregulated epithelial-to-mesenchymal (EMT) markers and induced several transcription factors and Cadherin-17 activation. The former induced the signalling activation of AKT, SRC and JNK kinases to increase adhesion, migration and invasion of CRC cells. In vivo, AIP expressing KM12 cells induced tumour growth and liver metastasis. Furthermore, KM12C (poorly metastatic) cells ectopically expressing AIP became metastatic to the liver. CONCLUSIONS: Our data reveal new roles for AIP in regulating proteins associated with cancer and metastasis to induce tumorigenic and metastatic properties in colon cancer cells driving liver metastasis.


Asunto(s)
Neoplasias del Colon , Neoplasias Colorrectales , Neoplasias Hepáticas , Neoplasias del Recto , Carcinogénesis/genética , Línea Celular Tumoral , Movimiento Celular , Neoplasias Colorrectales/patología , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , Hidrocarburos , Inmunohistoquímica , Neoplasias Hepáticas/secundario , Metástasis de la Neoplasia
18.
Inflamm Res ; 71(5-6): 591-602, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35471601

RESUMEN

BACKGROUND: Inflammation is a common feature in the pathogenesis of chronic kidney disease (CKD), regardless of the disease cause. Our aim was to evaluate the potential of several inflammatory biomarkers in CKD diagnosis and staging. METHODS: A total of 24 healthy controls and 92 pre-dialysis CKD patients with diverse etiologies, were enrolled in this study and grouped according to their CKD stage. We analysed the circulating levels of inflammatory molecules, C-reactive protein (CRP), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), tumor necrosis factor receptor 2 (TNFR2), pentraxin 3 (PTX3) and leptin, as well as the hemogram. We studied their association with parameters of kidney function and kidney injury, to evaluate their potential as early markers of the disease and/or of its worsening, as well as their interplay. RESULTS: Compared to controls, patients in CKD stages 1-2 presented significantly higher IL-6 and TNFR2 levels, and higher neutrophil-to-lymphocyte ratio. All inflammatory cytokines and acute-phase proteins showed a trend to increase up to stage 3, stabilizing or declining thereafter, save for TNFR2, which steadily increased from stage to stage. All inflammatory molecules, apart from PTX3, were negatively and significantly correlated with eGFR, with a remarkable value for TNFR2 (r = - 0.732, p < 0.001). CONCLUSION: TNFR2 might be useful for an early detection of CKD, as well as for disease staging/worsening. Still, the potential value of this biomarker in disease progression warrants further investigation.


Asunto(s)
Receptores Tipo II del Factor de Necrosis Tumoral , Insuficiencia Renal Crónica , Biomarcadores/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Riñón/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Insuficiencia Renal Crónica/metabolismo
19.
Anal Chem ; 93(12): 5037-5045, 2021 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-33508936

RESUMEN

Recently, our group introduced the use of silver nanowires (AgNWs) as novel non-invasive endoscopic probes for detecting intracellular Raman signals. This method, although innovative and promising, relies exclusively on the plasmonic waveguiding effect for signal enhancement. It, therefore, requires sophisticated operational tools and protocols, drastically limiting its applicability. Herein, an advanced strategy is offered to significantly enhance the performance of these endoscopic probes, making this approach widely accessible and versatile for cellular studies. By uniformly forming gold structures on the smooth AgNW surface via a galvanic replacement reaction, the density of the light coupling points along the whole probe surface is drastically increased, enabling high surface-enhanced Raman scattering (SERS) efficiency upon solely focusing the excitation light on the gold-etched AgNW. The applicability of these gold-etched AgNW probes for molecular sensing in cells is demonstrated by detecting site-specific and high-resolved SERS spectra of cell compartment-labeling dyes, namely, 4',6-diamidino-2-phenylindole in the nucleus and 3,3'-dioctadecyloxacarbocyanine on the membrane. The remarkable spectral sensitivity achieved provides essential structural information of the analytes, indicating the overall potential of the proposed approach for cellular studies of drug interactions with biomolecular items.


Asunto(s)
Nanocables , Plata , Endoscopía , Oro , Espectrometría Raman
20.
J Virol ; 94(7)2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31941774

RESUMEN

The HIV-1 capsid protein performs multiple roles in virus replication both during assembly and particle release and during virus trafficking into the nucleus. In order to decipher the roles of capsid protein during early replication, a reliable method to follow its intracellular distribution is required. To complement existing approaches to track HIV-1 capsid during early infection, we developed an HIV-1 imaging strategy, relying on viruses incorporating enhanced green fluorescent protein (eGFP)-tagged capsid (CA-eGFP) protein and mCherry-tagged integrase (IN-mCherry). Wild-type infectivity and sensitivity to inhibition by PF74 point to the functionality of CA-eGFP-containing complexes. Low numbers of CA-eGFP molecules were located inside the viral core and imported into the nucleus without significant loss in intensity. Less than 5% of particles carrying both CA-eGFP and IN-mCherry retained both labelled proteins after nuclear entry, implying a major uncoating event at the nuclear envelope dissociating IN and CA. Still, 20% of all CA-eGFP-containing complexes were detected in the nucleus. Unlike for IN-mCherry complexes, addition of the integrase inhibitor raltegravir had no effect on CA-eGFP-containing complexes, suggesting that these may be not (yet) competent for integration. Our imaging strategy offers alternative visualization of viral capsid trafficking and helps clarify its potential role during integration.IMPORTANCE HIV-1 capsid protein (CA) builds a conical shell protecting viral genomic RNA inside the virus particles. Upon entry into host cells, this shell disassembles in a process of uncoating, which is coordinated with reverse transcription of viral RNA into DNA. After uncoating, a portion of CA remains associated with the viral DNA and mediates its nuclear import and, potentially, integration into host DNA. In this study, we tagged CA with eGFP to follow its trafficking in host cells and address potential CA roles in the nucleus. We found that while functional viruses import the tagged CA into the nucleus, this capsid protein is not part of integration-competent complexes. The roles of nuclear CA thus remain to be established.


Asunto(s)
Transporte Activo de Núcleo Celular , Proteínas de la Cápside/metabolismo , Cápside/metabolismo , VIH-1/fisiología , Integración Viral , Núcleo Celular/virología , Citoplasma/metabolismo , ADN Viral/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Células HeLa , Humanos , Membrana Nuclear/metabolismo , ARN Viral/metabolismo , Replicación Viral , Desencapsidación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA