Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
New Phytol ; 243(4): 1329-1346, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898642

RESUMEN

Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.


Asunto(s)
Cycadopsida , Sequías , Hojas de la Planta , Agua , Xilema , Xilema/fisiología , Xilema/anatomía & histología , Hojas de la Planta/anatomía & histología , Hojas de la Planta/fisiología , Cycadopsida/fisiología , Cycadopsida/anatomía & histología , Especificidad de la Especie
2.
Plant Physiol ; 189(4): 2159-2174, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35640109

RESUMEN

Mangroves are frequently inundated with saline water and have evolved different anatomical and physiological mechanisms to filter and, in some species, excrete excess salt from the water they take up. Because salts impose osmotic stress, interspecific differences in salt tolerance and salt management strategy may influence physiological responses to drought throughout the entire plant hydraulic pathway, from roots to leaves. Here, we characterized embolism vulnerability simultaneously in leaves, stems, and roots of seedlings of two mangrove species (Avicennia marina and Bruguiera gymnorrhiza) along with turgor-loss points in roots and leaves and xylem anatomical traits. In both species, the water potentials causing 50% of total embolism were less negative in roots and leaves than they were in stems, but the water potentials causing incipient embolism (5%) were similar in roots, stems, and leaves. Stomatal closure in leaves and turgor loss in both leaves and roots occurred at water potentials only slightly less negative than the water potentials causing 5% of total embolism. Xylem anatomical traits were unrelated to vulnerability to embolism. Vulnerability segmentation may be important in limiting embolism spread into stems from more vulnerable roots and leaves. Interspecific differences in salt tolerance affected hydraulic traits from roots to leaves: the salt-secretor A. marina lost turgor at more negative water potentials and had more embolism-resistant xylem than the salt-excluder B. gymnorrhiza. Characterizing physiological thresholds of roots may help to explain recent mangrove mortality after drought and extended saltwater inundation.


Asunto(s)
Avicennia , Xilema , Sequías , Hojas de la Planta/fisiología , Raíces de Plantas/fisiología , Tallos de la Planta , Árboles , Xilema/fisiología
3.
Ann Bot ; 131(2): 347-360, 2023 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-36516425

RESUMEN

BACKGROUND AND AIMS: While genome size limits the minimum sizes and maximum numbers of cells that can be packed into a given leaf volume, mature cell sizes can be substantially larger than their meristematic precursors and vary in response to abiotic conditions. Mangroves are iconic examples of how abiotic conditions can influence the evolution of plant phenotypes. METHODS: Here, we examined the coordination between genome size, leaf cell sizes, cell packing densities and leaf size in 13 mangrove species across four sites in China. Four of these species occurred at more than one site, allowing us to test the effect of climate on leaf anatomy. RESULTS: We found that genome sizes of mangroves were very small compared to other angiosperms, but, like other angiosperms, mangrove cells were always larger than the minimum size defined by genome size. Increasing mean annual temperature of a growth site led to higher packing densities of veins (Dv) and stomata (Ds) and smaller epidermal cells but had no effect on stomatal size. In contrast to other angiosperms, mangroves exhibited (1) a negative relationship between guard cell size and genome size; (2) epidermal cells that were smaller than stomata; and (3) coordination between Dv and Ds that was not mediated by epidermal cell size. Furthermore, mangrove epidermal cell sizes and packing densities covaried with leaf size. CONCLUSIONS: While mangroves exhibited coordination between veins and stomata and attained a maximum theoretical stomatal conductance similar to that of other angiosperms, the tissue-level tradeoffs underlying these similar relationships across species and environments were markedly different, perhaps indicative of the unique structural and physiological adaptations of mangroves to their stressful environments.


Asunto(s)
Magnoliopsida , Magnoliopsida/genética , Magnoliopsida/anatomía & histología , Estomas de Plantas/fisiología , Tamaño del Genoma , Hojas de la Planta/fisiología , Tamaño de la Célula
4.
Physiol Plant ; 175(3): e13924, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37158623

RESUMEN

Interconduit pit membranes, which are permeable regions in the primary cell wall that connect to adjacent conduits, play a crucial role in water relations and the movement of nutrients between xylem conduits. However, how pit membrane characteristics might influence water-carbon coupling remains poorly investigated in cycads. We examined pit characteristics, the anatomical and photosynthetic traits of 13 cycads from a common garden, to determine if pit traits and their coordination are related to water relations and carbon economy. We found that the pit traits of cycads were highly variable and that cycads exhibited a similar tradeoff between pit density and pit area as other plant lineages. Unlike other plant lineages (1) pit membranes, pit apertures, and pit shapes of cycads were not coordinated as in angiosperms; (2) cycads exhibited larger pit membrane areas but lower pit densities relative to ferns and angiosperms, but smaller and similar pit membrane densities to non-cycad gymnosperms; (3) cycad pit membrane areas and densities were partially coordinated with anatomical traits, with hydraulic supply of the rachis positively coordinated with photosynthesis, whereas pit aperture areas and fractions were negatively coordinated with photosynthetic traits; (4) cycad pit traits reflected adaptation to wetter habitats for Cycadaceae and drier habitats for Zamiaceae. The large variation in pit traits, the unique pit membrane size and density, and the partial coordination of pit traits with anatomical and physiological traits of the rachis and pinna among cycads may have facilitated their dominance in a variety of ecosystems from the Mesozoic to modern times.


Asunto(s)
Cycadopsida , Ecosistema , Cycadopsida/metabolismo , Fotosíntesis , Plantas/metabolismo , Agua/metabolismo , Carbono
5.
Proc Natl Acad Sci U S A ; 117(52): 33373-33383, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318178

RESUMEN

Natural selection is an important driver of genetic and phenotypic differentiation between species. For species in which potential gene flow is high but realized gene flow is low, adaptation via natural selection may be a particularly important force maintaining species. For a recent radiation of New World desert shrubs (Encelia: Asteraceae), we use fine-scale geographic sampling and population genomics to determine patterns of gene flow across two hybrid zones formed between two independent pairs of species with parapatric distributions. After finding evidence for extremely strong selection at both hybrid zones, we use a combination of field experiments, high-resolution imaging, and physiological measurements to determine the ecological basis for selection at one of the hybrid zones. Our results identify multiple ecological mechanisms of selection (drought, salinity, herbivory, and burial) that together are sufficient to maintain species boundaries despite high rates of hybridization. Given that multiple pairs of Encelia species hybridize at ecologically divergent parapatric boundaries, such mechanisms may maintain species boundaries throughout Encelia.


Asunto(s)
Asteraceae/genética , Clima Desértico , Hibridación Genética , Selección Genética , Ecosistema , Flujo Génico , Aptitud Genética , Herbivoria , México , Salinidad , Agua , Viento
6.
Mol Biol Evol ; 38(9): 3737-3741, 2021 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-33956142

RESUMEN

Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional.


Asunto(s)
Evolución Molecular , Mamíferos , Animales , Evolución Biológica , Tamaño del Genoma , Mamíferos/genética , Densidad de Población
7.
New Phytol ; 234(3): 946-960, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35037256

RESUMEN

Many plant leaves have two layers of photosynthetic tissue: the palisade and spongy mesophyll. Whereas palisade mesophyll consists of tightly packed columnar cells, the structure of spongy mesophyll is not well characterized and often treated as a random assemblage of irregularly shaped cells. Using micro-computed tomography imaging, topological analysis, and a comparative physiological framework, we examined the structure of the spongy mesophyll in 40 species from 30 genera with laminar leaves and reticulate venation. A spectrum of spongy mesophyll diversity encompassed two dominant phenotypes: first, an ordered, honeycomblike tissue structure that emerged from the spatial coordination of multilobed cells, conforming to the physical principles of Euler's law; and second, a less-ordered, isotropic network of cells. Phenotypic variation was associated with transitions in cell size, cell packing density, mesophyll surface-area-to-volume ratio, vein density, and maximum photosynthetic rate. These results show that simple principles may govern the organization and scaling of the spongy mesophyll in many plants and demonstrate the presence of structural patterns associated with leaf function. This improved understanding of mesophyll anatomy provides new opportunities for spatially explicit analyses of leaf development, physiology, and biomechanics.


Asunto(s)
Células del Mesófilo , Hojas de la Planta , Tamaño de la Célula , Células del Mesófilo/fisiología , Fotosíntesis , Hojas de la Planta/fisiología , Microtomografía por Rayos X
8.
Conserv Biol ; 36(1): e13784, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34114682

RESUMEN

Coastal zones, which connect terrestrial and aquatic ecosystems, are among the most resource-rich regions globally and home to nearly 40% of the global human population. Because human land-based activities can alter natural processes in ways that affect adjacent aquatic ecosystems, land-sea interactions are increasingly recognized as critical to coastal conservation planning and governance. However, the complex socioeconomic dynamics inherent in coastal and marine socioecological systems (SESs) have received little consideration. Drawing on knowledge generalized from long-term studies in Caribbean Nicaragua, we devised a conceptual framework that clarifies the multiple ways socioeconomically driven behavior can link the land and sea. In addition to other ecosystem effects, the framework illustrates how feedbacks resulting from changes to aquatic resources can influence terrestrial resource management decisions and land uses. We assessed the framework by applying it to empirical studies from a variety of coastal SESs. The results suggest its broad applicability and highlighted the paucity of research that explicitly investigates the effects of human behavior on coastal SES dynamics. We encourage researchers and policy makers to consider direct, indirect, and bidirectional cross-ecosystem links that move beyond traditionally recognized land-to-sea processes.


Los Usuarios de Recursos como Conexiones entre la Tierra y el Mar dentro de los Sistemas Socioecológicos Marinos y Costeros Resumen Las zonas costeras, que conectan los ecosistemas terrestres y acuáticos, se encuentran entre las regiones más ricas en recursos a nivel mundial y además albergan a casi el 40% de la población humana de todo el mundo. Ya que las actividades humanas terrestres pueden alterar los procesos naturales de manera que terminan por afectar a los ecosistemas acuáticos adyacentes, cada vez se reconoce más a las interacciones tierra-mar como críticas para la planeación de la conservación y la gestión costera. Sin embargo, las complejas dinámicas socioeconómicas inherentes a los sistemas socioecológicos (SES) marinos y costeros han recibido poca atención. Con el conocimiento generalizado a partir de los estudios a largo plazo realizados en el Caribe de Nicaragua como punto de partida, diseñamos un marco conceptual que clarifica las múltiples formas en las que el comportamiento con origen socioeconómico puede conectar a la tierra y al mar. Sumado a otros efectos de los ecosistemas, el marco conceptual ilustró cómo los comentarios resultantes de los cambios ocurridos en los recursos acuáticos pueden influir sobre las decisiones de manejo de recursos terrestres y de uso de suelo. Evaluamos el marco conceptual mediante su aplicación a los estudios empíricos de una variedad de SES costeros. Los resultados sugirieron su aplicabilidad generalizada y resaltaron la escasez de investigaciones busquen específicamente los efectos del comportamiento humano sobre las dinámicas de los SES costeros. Alentamos a los investigadores y a los formuladores de políticas a considerar las conexiones directas, indirectas y bidireccionales entre ecosistemas que van más allá de los procesos de tierra a mar reconocidos tradicionalmente.


Asunto(s)
Conservación de los Recursos Naturales , Ecosistema , Conservación de los Recursos Naturales/métodos , Humanos , Nicaragua
9.
Proc Biol Sci ; 288(1945): 20203145, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33622134

RESUMEN

Maintaining high rates of photosynthesis in leaves requires efficient movement of CO2 from the atmosphere to the mesophyll cells inside the leaf where CO2 is converted into sugar. CO2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO2 diffusion into and through the leaf, maintaining high rates of CO2 supply to the leaf mesophyll despite declining atmospheric CO2 levels during the Cretaceous.


Asunto(s)
Dióxido de Carbono , Células del Mesófilo , Tamaño de la Célula , Tamaño del Genoma , Fotosíntesis , Hojas de la Planta
10.
New Phytol ; 230(3): 1228-1241, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33460447

RESUMEN

There are multiple hypotheses for the spectacular plant diversity found in deserts. We explore how different factors, including the roles of ecological opportunity and selection, promote diversification and disparification in Encelia, a lineage of woody plants in the deserts of the Americas. Using a nearly complete species-level phylogeny based on double-digest restriction-aided sequencing along with a broad set of phenotypic traits, we estimate divergence times and diversification rates, identify instances of hybridization, quantify trait disparity and assess phenotypic divergence across environmental gradients. We show that Encelia originated and diversified recently (mid-Pleistocene) and rapidly, with rates comparable to notable adaptive radiations in plants. Encelia probably originated in the hot deserts of North America, with subsequent diversification across steep environmental gradients. We uncover multiple instances of gene flow between species. The radiation of Encelia is characterized by fast rates of phenotypic evolution, trait lability and extreme disparity across environments and between species pairs with overlapping geographic ranges. Encelia exemplifies how interspecific gene flow in combination with high trait lability can enable exceptionally fast diversification and disparification across steep environmental gradients.


Asunto(s)
Asteraceae , Hibridación Genética , Evolución Biológica , Flujo Génico , América del Norte , Filogenia
11.
New Phytol ; 229(2): 665-672, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32697862

RESUMEN

Understanding how floral traits affect reproduction is key for understanding genetic diversity, speciation, and trait evolution in the face of global changes and pollinator decline. However, there has not yet been a unified framework to characterize the major trade-offs and axes of floral trait variation. Here, we propose the development of a floral economics spectrum (FES) that incorporates the multiple pathways by which floral traits can be shaped by multiple agents of selection acting on multiple flower functions. For example, while pollinator-mediated selection has been considered the primary factor affecting flower evolution, selection by nonpollinator agents can reinforce or oppose pollinator selection, and, therefore, affect floral trait variation. In addition to pollinators, the FES should consider nonpollinator biotic agents and floral physiological costs, broadening the drivers of floral traits beyond pollinators. We discuss how coordinated evolution and trade-offs among floral traits and between floral and vegetative traits may influence the distribution of floral traits across biomes and lineages, thereby influencing organismal evolution and community assembly.


Asunto(s)
Flores , Polinización , Fenotipo , Reproducción
12.
PLoS Biol ; 16(1): e2003706, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29324757

RESUMEN

The abrupt origin and rapid diversification of the flowering plants during the Cretaceous has long been considered an "abominable mystery." While the cause of their high diversity has been attributed largely to coevolution with pollinators and herbivores, their ability to outcompete the previously dominant ferns and gymnosperms has been the subject of many hypotheses. Common among these is that the angiosperms alone developed leaves with smaller, more numerous stomata and more highly branching venation networks that enable higher rates of transpiration, photosynthesis, and growth. Yet, how angiosperms pack their leaves with smaller, more abundant stomata and more veins is unknown but linked-we show-to simple biophysical constraints on cell size. Only angiosperm lineages underwent rapid genome downsizing during the early Cretaceous period, which facilitated the reductions in cell size necessary to pack more veins and stomata into their leaves, effectively bringing actual primary productivity closer to its maximum potential. Thus, the angiosperms' heightened competitive abilities are due in no small part to genome downsizing.


Asunto(s)
Genoma de Planta/genética , Magnoliopsida/genética , Polinización/genética , Evolución Biológica , Bases de Datos Genéticas , Genómica/métodos , Genómica/estadística & datos numéricos , Herbivoria , Fotosíntesis , Filogenia , Hojas de la Planta , Polinización/fisiología , Semillas/genética
13.
Am J Bot ; 107(8): 1177-1188, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32754914

RESUMEN

PREMISE: The young seedling life stage is critical for reforestation after disturbance and for species migration under climate change, yet little is known regarding their basic hydraulic function or vulnerability to drought. Here, we sought to characterize responses to desiccation including hydraulic vulnerability, xylem anatomical traits, and impacts on other stem tissues that contribute to hydraulic functioning. METHODS: Larix occidentalis, Pseudotsuga menziesii, and Pinus ponderosa (all ≤6 weeks old) were imaged using x-ray computed microtomography during desiccation to assess seedling biomechanical responses with concurrently measured hydraulic conductivity (ks ) and water potential (Ψ) to assess vulnerability to xylem embolism formation and other tissue damage. RESULTS: In non-stressed samples for all species, pith and cortical cells appeared circular and well hydrated, but they started to empty and deform with decreasing Ψ which resulted in cell tearing and eventual collapse. Despite the severity of this structural damage, the vascular cambium remained well hydrated even under the most severe drought. There were significant differences among species in vulnerability to xylem embolism formation, with 78% xylem embolism in L. occidentalis by Ψ of -2.1 MPa, but only 47.7% and 62.1% in P. ponderosa and P. menziesii at -4.27 and -6.73 MPa, respectively. CONCLUSIONS: Larix occidentalis seedlings appeared to be more susceptible to secondary xylem embolism compared to the other two species, but all three maintained hydration of the vascular cambium under severe stress, which could facilitate hydraulic recovery by regrowth of xylem when stress is relieved.


Asunto(s)
Pseudotsuga , Tracheophyta , Desecación , Sequías , Plantones , Agua , Xilema
15.
New Phytol ; 223(1): 193-203, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30767230

RESUMEN

Maintaining water balance has been a critical constraint shaping the evolution of leaf form and function. However, flowers, which are heterotrophic and relatively short-lived, may not be constrained by the same physiological and developmental factors. We measured physiological parameters derived from pressure-volume curves for leaves and flowers of 22 species to characterize the diversity of hydraulic traits in flowers and to determine whether flowers are governed by the same constraints as leaves. Compared with leaves, flowers had high saturated water content, which was a strong predictor of hydraulic capacitance in both leaves and flowers. Principal component analysis revealed that flowers occupied a different region of multivariate trait space than leaves and that hydraulic traits are more diverse in flowers than in leaves. Without needing to maintain high rates of transpiration, flowers rely on other hydraulic traits, such as high hydraulic capacitance, to maintain turgor pressure. As a result, instead of employing a metabolically expensive but durable carbon (C)-based skeleton, flowers may rely predominantly on a metabolically cheaper, hydrostatic skeleton to keep their structures on display for pollinators, which has important implications for both the costs of reproduction and the biomechanical performance of flowers, particularly during drought.


Asunto(s)
Flores/fisiología , Hojas de la Planta/fisiología , Carácter Cuantitativo Heredable , Agua/fisiología , Análisis Multivariante , Ósmosis , Filogenia , Presión , Análisis de Componente Principal , Análisis de Regresión , Especificidad de la Especie
16.
Plant Physiol ; 178(1): 148-162, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30042212

RESUMEN

The leaf intercellular airspace (IAS) is generally considered to have high conductance to CO2 diffusion relative to the liquid phase. While previous studies accounted for leaf-level variation in porosity and mesophyll thickness, they omitted 3D IAS traits that potentially influence IAS conductance (gIAS). Here, we reevaluated the standard equation for gIAS by incorporating tortuosity, lateral path lengthening, and IAS connectivity. We measured and spatially mapped these geometric IAS traits for 19 Bromeliaceae species with Crassulacean acid metabolism (CAM) or C3 photosynthetic pathways using x-ray microcomputed tomography imaging and a novel computational approach. We found substantial variation in porosity (0.04-0.73 m3 m-3), tortuosity (1.09-3.33 m2 m-2), lateral path lengthening (1.12-3.19 m m-1), and IAS connectivity (0.81-0.97 m2 m-2) across all bromeliad leaves. The revised gIAS model predicted significantly lower gIAS in CAM (0.01-0.19 mol m-2 s-1 bar-1) than in C3 (0.41-2.38 mol m-2 s-1 bar-1) plants due to a coordinated decline in these IAS traits. Our reevaluated equation also generally predicted lower gIAS values than the former one. Moreover, we observed high spatial heterogeneity in these IAS geometric traits throughout the mesophyll, especially within CAM leaves. Our data show that IAS traits that better capture the 3D complexity of leaves strongly influence gIAS and that the impact of the IAS on mesophyll conductance should be carefully considered with respect to leaf anatomy. We provide a simple function to estimate tortuosity and lateral path lengthening in the absence of access to imaging tools such as x-ray microcomputed tomography or other novel 3D image-processing techniques.


Asunto(s)
Bromeliaceae/metabolismo , Dióxido de Carbono/metabolismo , Células del Mesófilo/metabolismo , Hojas de la Planta/metabolismo , Algoritmos , Bromeliaceae/clasificación , Bromeliaceae/genética , Difusión , Fotosíntesis , Filogenia , Hojas de la Planta/anatomía & histología , Hojas de la Planta/citología , Porosidad , Especificidad de la Especie , Microtomografía por Rayos X
17.
Am J Bot ; 106(7): 943-957, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31294833

RESUMEN

PREMISE: Because of its broad range in the neotropical rainforest and within tree canopies, the tank bromeliad Guzmania monostachia was investigated as a model of how varying leaf hydraulic conductance (Kleaf ) could help plants resist and recover from episodic drought. The two pathways of Kleaf , inside and outside the xylem, were also examined to determine the sites and causes of major hydraulic resistances within the leaf. METHODS: We measured leaf hydraulic conductance for plants in the field and laboratory under wet, dry, and rewetted conditions and applied physiological, anatomical, and gene expression analysis with modeling to investigate changes in Kleaf . RESULTS: After 7 d with no rain in the field or 14 days with no water in the glasshouse, Kleaf decreased by 50% yet increased to hydrated values within 4 d of tank refilling. Staining to detect embolism combined with modeling indicated that changes outside the xylem were of greater importance to Kleaf than were changes inside the xylem and were associated with changes in intercellular air spaces (aerenchyma), aquaporin expression and inhibition, and cuticular conductance. CONCLUSIONS: Low values for all conductances during drying, particularly in pathways outside the xylem, lead to hydraulic resilience for this species and may also contribute to its broad environmental tolerances.


Asunto(s)
Bromeliaceae/fisiología , Hojas de la Planta/fisiología , Agua/fisiología , Acuaporinas/metabolismo , Bromeliaceae/anatomía & histología , Sequías , Hojas de la Planta/anatomía & histología
19.
Plant Cell Environ ; 41(10): 2250-2262, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29603273

RESUMEN

For most angiosperms, producing and maintaining flowers is critical to sexual reproduction, yet little is known about the physiological processes involved in maintaining flowers throughout anthesis. Among extant species, flowers of the genus Calycanthus have the highest hydraulic conductance and vein densities of species measured to date, yet they can wilt by late morning under hot conditions. Here, we combine diurnal measurements of gas exchange and water potential, pressure-volume relations, functional responses of gas exchange, and characterization of embolism formation using high resolution X-ray computed microtomography to determine drought responses of Calycanthus flowers. Transpiration from flowers frequently exceeded transpiration from leaves, and flowers were unable to limit transpiration under conditions of high vapour pressure deficit. As a result, they rely heavily on hydraulic capacitance to prevent water potential declines. Despite having high water potentials at turgor loss, flowers were very resistant to embolism formation, with no embolism apparent until tepal water potentials had declined to -2 MPa. Although Calycanthus flowers remain connected to the stem xylem and have high hydraulic capacitance, their inability to curtail transpiration leads to turgor loss. These results suggest that extreme climate events may cause flower failure, potentially preventing successful reproduction.


Asunto(s)
Calycanthaceae/metabolismo , Flores/metabolismo , Agua/metabolismo , Calycanthaceae/fisiología , Calycanthaceae/ultraestructura , Deshidratación , Flores/fisiología , Flores/ultraestructura , Transpiración de Plantas , Microtomografía por Rayos X
20.
Plant Cell Environ ; 39(10): 2123-32, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27144996

RESUMEN

Flowers face desiccating conditions, yet little is known about their ability to transport water. We quantified variability in floral hydraulic conductance (Kflower ) for 20 species from 10 families and related it to traits hypothesized to be associated with liquid and vapour phase water transport. Basal angiosperm flowers had trait values associated with higher water and carbon costs than monocot and eudicot flowers. Kflower was coordinated with water supply (vein length per area, VLA) and loss (minimum epidermal conductance, gmin ) traits among the magnoliids, but was insensitive to variation in these traits among the monocots and eudicots. Phylogenetic independent contrast (PIC) correlations revealed that few traits had undergone coordinated evolution. However, VLA and the desiccation time (Tdes ), the quotient of water content and gmin , had significant trait and PIC correlations. The near absence of stomata from monocot and eudicot flowers may have been critical in minimizing water loss rates among these clades. Early divergent, basal angiosperm flowers maintain higher Kflower because of traits associated with high rates water loss and water supply, while monocot and eudicot flowers employ a more conservative strategy of limiting water loss and may rely on stored water to maintain turgor and delay desiccation.


Asunto(s)
Magnoliopsida/fisiología , Agua/metabolismo , Carbono/metabolismo , Hidrodinámica , Magnoliopsida/metabolismo , Filogenia , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA