Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Infect Dis ; 20(1): 860, 2020 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-33213370

RESUMEN

BACKGROUND: The accuracy of a new optical biosensor (OB) point-of-care device for the detection of severe infections is studied. METHODS: The OB emits different wavelengths and outputs information associated with heart rate, pulse oximetry, levels of nitric oxide and kidney function. At the first phase, recordings were done every two hours for three consecutive days after hospital admission in 142 patients at high-risk for sepsis by placing the OB on the forefinger. At the second phase, single recordings were done in 54 patients with symptoms of viral infection; 38 were diagnosed with COVID-19. RESULTS: At the first phase, the cutoff value of positive likelihood of 18 provided 100% specificity and 100% positive predictive value for the diagnosis of sepsis. These were 87.5 and 91.7% respectively at the second phase. OB diagnosed severe COVID-19 with 83.3% sensitivity and 87.5% negative predictive value. CONCLUSIONS: The studied OB seems valuable for the discrimination of infection severity.


Asunto(s)
Técnicas Biosensibles/métodos , Infecciones por Coronavirus/diagnóstico , Neumonía Viral/diagnóstico , Sepsis/diagnóstico , Anciano , Anciano de 80 o más Años , Algoritmos , Área Bajo la Curva , Betacoronavirus/aislamiento & purificación , COVID-19 , Prueba de COVID-19 , Técnicas de Laboratorio Clínico , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/virología , Diagnóstico Precoz , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Neumonía Viral/patología , Neumonía Viral/virología , Curva ROC , SARS-CoV-2 , Sensibilidad y Especificidad , Índice de Severidad de la Enfermedad
2.
Sensors (Basel) ; 20(6)2020 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-32192204

RESUMEN

A wristwatch-based wireless sensor platform for IoT wearable health monitoring applications is presented. The paper describes the platform in detail, with a particular focus given to the design of a novel and compact wireless sub-system for 868 MHz wristwatch applications. An example application using the developed platform is discussed for arterial oxygen saturation (SpO2) and heart rate measurement using optical photoplethysmography (PPG). A comparison of the wireless performance in the 868 MHz and the 2.45 GHz bands is performed. Another contribution of this work is the development of a highly integrated 868 MHz antenna. The antenna structure is printed on the surface of a wristwatch enclosure using laser direct structuring (LDS) technology. At 868 MHz, a low specific absorption rate (SAR) of less than 0.1% of the maximum permissible limit in the simulation is demonstrated. The measured on-body prototype antenna exhibits a -10 dB impedance bandwidth of 36 MHz, a peak realized gain of -4.86 dBi and a radiation efficiency of 14.53% at 868 MHz. To evaluate the performance of the developed 868 MHz sensor platform, the wireless communication range measurements are performed in an indoor environment and compared with a commercial Bluetooth wristwatch device.


Asunto(s)
Internet de las Cosas/instrumentación , Monitoreo Ambulatorio/instrumentación , Oximetría/instrumentación , Fotopletismografía/instrumentación , Tecnología Inalámbrica/instrumentación , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Impedancia Eléctrica , Ambiente , Diseño de Equipo , Salud , Humanos , Aplicaciones Móviles , Monitoreo Ambulatorio/métodos , Oximetría/métodos , Fotopletismografía/métodos , Muñeca
3.
Sensors (Basel) ; 18(1)2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29271941

RESUMEN

Internet of Things (IoT) technology is rapidly emerging in medical applications as it offers the possibility of lower-cost personalized healthcare monitoring. At the present time, the 2.45 GHz band is in widespread use for these applications but in this paper, the authors investigate the potential of the 915 MHz ISM band in implementing future, wearable IoT devices. The target sensor is a wrist-worn wireless heart rate and arterial oxygen saturation (SpO2) monitor with the goal of providing efficient wireless functionality and long battery lifetime using a commercial Sub-GHz low-power radio transceiver. A detailed analysis of current consumption for various wireless protocols is also presented and analyzed. A novel 915 MHz antenna design of compact size is reported that has good resilience to detuning by the human body. The antenna also incorporates a matching network to meet the challenging bandwidth requirements and is fabricated using standard, low-cost FR-4 material. Full-Wave EM simulations are presented for the antenna placed in both free-space and on-body cases. A prototype antenna is demonstrated and has dimensions of 44 mm × 28 mm × 1.6 mm. The measured results at 915 MHz show a 10 dB return loss bandwidth of 55 MHz, a peak realized gain of - 2.37 dBi in free-space and - 6.1 dBi on-body. The paper concludes by highlighting the potential benefits of 915 MHz operation for future IoT devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA