Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 12(1): 45-53, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21151101

RESUMEN

Cytotoxic T lymphocytes (CTLs) recognize peptides presented by HLA class I molecules on the cell surface. The C terminus of these CTL epitopes is considered to be produced by the proteasome. Here we demonstrate that the cytosolic endopeptidases nardilysin and thimet oligopeptidase (TOP) complemented proteasome activity. Nardilysin and TOP were required, either together or alone, for the generation of a tumor-specific CTL epitope from PRAME, an immunodominant CTL epitope from Epstein-Barr virus protein EBNA3C, and a clinically important epitope from the melanoma protein MART-1. TOP functioned as C-terminal trimming peptidase in antigen processing, and nardilysin contributed to both the C-terminal and N-terminal generation of CTL epitopes. By broadening the antigenic peptide repertoire, nardilysin and TOP strengthen the immune defense against intracellular pathogens and cancer.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Epítopos de Linfocito T/metabolismo , Metaloendopeptidasas/metabolismo , Linfocitos T Citotóxicos/metabolismo , Presentación de Antígeno/genética , Antígenos de Neoplasias/química , Antígenos de Neoplasias/inmunología , Citotoxicidad Inmunológica/genética , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígeno HLA-A3/metabolismo , Humanos , Células K562 , Metaloendopeptidasas/genética , Metaloendopeptidasas/inmunología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Fragmentos de Péptidos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , ARN Interferente Pequeño/genética , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/patología , Transgenes/genética
2.
Cell ; 133(7): 1202-13, 2008 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-18585354

RESUMEN

The multimeric membrane-tethering complexes TRAPPI and TRAPPII share seven subunits, of which four (Bet3p, Bet5p, Trs23p, and Trs31p) are minimally needed to activate the Rab GTPase Ypt1p in an event preceding membrane fusion. Here, we present the structure of a heteropentameric TRAPPI assembly complexed with Ypt1p. We propose that TRAPPI facilitates nucleotide exchange primarily by stabilizing the nucleotide-binding pocket of Ypt1p in an open, solvent-accessible form. Bet3p, Bet5p, and Trs23p interact directly with Ypt1p to stabilize this form, while the C terminus of Bet3p invades the pocket to participate in its remodeling. The Trs31p subunit does not interact directly with the GTPase but allosterically regulates the TRAPPI interface with Ypt1p. Our findings imply that TRAPPII activates Ypt1p by an identical mechanism. This view of a multimeric membrane-tethering assembly complexed with a Rab provides a framework for understanding events preceding membrane fusion at the molecular level.


Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Retículo Endoplásmico/metabolismo , Activación Enzimática , Aparato de Golgi/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Modelos Moleculares , Mapeo de Interacción de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Proteínas de Unión al GTP rab/química
3.
Proc Natl Acad Sci U S A ; 114(14): E2826-E2835, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28325868

RESUMEN

Insulin-degrading enzyme (IDE) hydrolyzes bioactive peptides, including insulin, amylin, and the amyloid ß peptides. Polyanions activate IDE toward some substrates, yet an endogenous polyanion activator has not yet been identified. Here we report that inositol phosphates (InsPs) and phosphatdidylinositol phosphates (PtdInsPs) serve as activators of IDE. InsPs and PtdInsPs interact with the polyanion-binding site located on an inner chamber wall of the enzyme. InsPs activate IDE by up to ∼95-fold, affecting primarily Vmax The extent of activation and binding affinity correlate with the number of phosphate groups on the inositol ring, with phosphate positional effects observed. IDE binds PtdInsPs from solution, immobilized on membranes, or presented in liposomes. Interaction with PtdInsPs, likely PtdIns(3)P, plays a role in localizing IDE to endosomes, where the enzyme reportedly encounters physiological substrates. Thus, InsPs and PtdInsPs can serve as endogenous modulators of IDE activity, as well as regulators of its intracellular spatial distribution.


Asunto(s)
Endosomas/metabolismo , Fosfatos de Inositol/metabolismo , Insulisina/metabolismo , Fosfatidilinositoles/metabolismo , Androstadienos/farmacología , Animales , Sitios de Unión , Células COS , Chlorocebus aethiops , Endosomas/efectos de los fármacos , Activación Enzimática , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Insulisina/química , Insulisina/genética , Liposomas/química , Liposomas/metabolismo , Mutación , Wortmanina
4.
J Biol Chem ; 289(51): 35605-19, 2014 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-25378390

RESUMEN

Neuropeptidases specialize in the hydrolysis of the small bioactive peptides that play a variety of signaling roles in the nervous and endocrine systems. One neuropeptidase, neurolysin, helps control the levels of the dopaminergic circuit modulator neurotensin and is a member of a fold group that includes the antihypertensive target angiotensin converting enzyme. We report the discovery of a potent inhibitor that, unexpectedly, binds away from the enzyme catalytic site. The location of the bound inhibitor suggests it disrupts activity by preventing a hinge-like motion associated with substrate binding and catalysis. In support of this model, the inhibition kinetics are mixed, with both noncompetitive and competitive components, and fluorescence polarization shows directly that the inhibitor reverses a substrate-associated conformational change. This new type of inhibition may have widespread utility in targeting neuropeptidases.


Asunto(s)
Regulación Alostérica , Inhibidores Enzimáticos/química , Metaloendopeptidasas/química , Estructura Terciaria de Proteína , Sitio Alostérico , Animales , Sitios de Unión/genética , Biocatálisis/efectos de los fármacos , Dominio Catalítico , Cristalografía por Rayos X , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/farmacología , Polarización de Fluorescencia , Cinética , Metaloendopeptidasas/genética , Metaloendopeptidasas/metabolismo , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Mutación Missense , Unión Proteica , Ratas , Especificidad por Sustrato
5.
Exp Eye Res ; 138: 134-44, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26142956

RESUMEN

Amyloid-beta (Aß) is a group of aggregation-prone, 38- to 43-amino acid peptides generated in the eye and other organs. Numerous studies suggest that the excessive build-up of low-molecular-weight soluble oligomers of Aß plays a role in the progression of Alzheimer's disease and other brain degenerative diseases. Recent studies raise the hypothesis that excessive Aß levels may contribute also to certain retinal degenerative diseases. These findings, together with evidence that a major portion of Aß is released as monomer into the extracellular space, raise the possibility that a technology enabling the enzymatic break-down of monomeric Aß in the living eye under physiological conditions could prove useful for research on ocular Aß physiology and, perhaps ultimately, for therapeutic applications. Neprilysin (NEP), an endopeptidase known to cleave Aß monomer into inactive products, is a membrane-associated protein. However, sNEP, a recombinant form of the NEP catalytic domain, is soluble in aqueous medium. With the aim of determining the Aß-cleaving activity of exogenous sNEP in the microenvironment of the intact eye, we analyzed the effect of intra-vitreally delivered sNEP on ocular Aß levels in mice that exhibit readily measurable, aqueous buffer-extractable Aß40 and Aß42, two principal forms of Aß. Anesthetized 10-month wild-type (C57BL/6J) and 2-3-month 5XFAD transgenic mice received intra-vitreal injections of sNEP (0.004-10 µg) in one eye and were sacrificed at defined post-treatment times (30 min - 12 weeks). Eye tissues (combined lens, vitreous, retina, RPE and choroid) were homogenized in phosphate-buffered saline, and analyzed for Aß40 and Aß42 (ELISA) and for total protein (Bradford assay). The fellow, untreated eye of each mouse served as control, and concentrations of Aß (pmol/g protein) in the treated eye were normalized to that of the untreated control eye. In C57BL/6J mice, as measured at 2 h after sNEP treatment, increasing amounts of injected sNEP yielded progressively greater reductions of Aß40, ranging from 12% ± 3% (mean ± SEM; n = 3) with 4 ng sNEP to 85% ± 13% (n = 5) with 10 µg sNEP. At 4 ng sNEP the average Aß40 reduction reached >70% by 24 h following treatment and remained near this level for about 8 weeks. In 5XFAD mice, 10 µg sNEP produced an Aß40 decrease of 99% ± 1% (n = 4) and a substantial although smaller decrease in Aß42 (42% ± 36%; n = 4) within 24 h. Electroretinograms (ERGs) were recorded from eyes of C57BL/6J and 5XFAD mice at 9 days following treatment with 4 ng or 10 µg sNEP, conditions that on average led, respectively, to an 82% and 91% Aß40 reduction in C57BL/6J eyes, an 87% and 92% Aß40 reduction in 5XFAD eyes, and a 23% and 52% Aß42 reduction in 5XFAD eyes. In all cases, sNEP-treated eyes exhibited robust ERG responses, consistent with a general tolerance of the posterior eye tissues to the investigated conditions of sNEP treatment. The sNEP-mediated decrease of ocular Aß levels reported here represents a possible approach for determining effects of Aß reduction in normally functioning eyes and in models of retinal degenerative disease.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Coroides/metabolismo , Cristalino/metabolismo , Neprilisina/farmacología , Retina/metabolismo , Cuerpo Vítreo/metabolismo , Anciano , Anciano de 80 o más Años , Animales , Modelos Animales de Enfermedad , Electrorretinografía , Ensayo de Inmunoadsorción Enzimática , Humanos , Inyecciones Intravítreas , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Persona de Mediana Edad , Donantes de Tejidos
6.
J Biol Chem ; 287(1): 48-57, 2012 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-22049080

RESUMEN

Insulin-degrading enzyme (IDE) (insulysin) is a zinc metallopeptidase that metabolizes several bioactive peptides, including insulin and the amyloid ß peptide. IDE is an unusual metallopeptidase in that it is allosterically activated by both small peptides and anions, such as ATP. Here, we report that the ATP-binding site is located on a portion of the substrate binding chamber wall arising largely from domain 4 of the four-domain IDE. Two variants having residues in this site mutated, IDEK898A,K899A,S901A and IDER429S, both show greatly decreased activation by the polyphosphate anions ATP and PPPi. IDEK898A,K899A,S901A is also deficient in activation by small peptides, suggesting a possible mechanistic link between the two types of allosteric activation. Sodium chloride at high concentrations can also activate IDE. There are no observable differences in average conformation between the IDE-ATP complex and unliganded IDE, but regions of the active site and C-terminal domain do show increased crystallographic thermal factors in the complex, suggesting an effect on dynamics. Activation by ATP is shown to be independent of the ATP hydrolysis activity reported for the enzyme. We also report that IDEK898A,K899A,S901A has reduced intracellular function relative to unmodified IDE, consistent with a possible role for anion activation of IDE activity in vivo. Together, the data suggest a model in which the binding of anions activates by reducing the electrostatic attraction between the two halves of the enzyme, shifting the partitioning between open and closed conformations of IDE toward the open form.


Asunto(s)
Insulisina/metabolismo , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Animales , Aniones/metabolismo , Sitios de Unión , Línea Celular , Cristalografía por Rayos X , Activación Enzimática , Insulisina/química , Insulisina/genética , Espacio Intracelular/metabolismo , Modelos Moleculares , Mutagénesis , Mutación , Conformación Proteica , Ratas
7.
PLoS One ; 18(7): e0287086, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37440518

RESUMEN

Puromycin-sensitive aminopeptidase (E.C. 3.4.11.14, UniProt P55786), a zinc metallopeptidase belonging to the M1 family, degrades a number of bioactive peptides as well as peptides released from the proteasome, including polyglutamine. We report the crystal structure of PSA at 2.3 Ǻ. Overall, the enzyme adopts a V-shaped architecture with four domains characteristic of the M1 family aminopeptidases, but it is in a less compact conformation compared to most M1 enzymes of known structure. A microtubule binding sequence is present in a C-terminal HEAT repeat domain of the enzyme in a position where it might serve to mediate interaction with tubulin. In the catalytic metallopeptidase domain, an elongated active site groove lined with aromatic and hydrophobic residues and a large S1 subsite may play a role in broad substrate recognition. The structure with bound polyglutamine shows a possible interacting mode of this peptide, which is supported by mutation.


Asunto(s)
Aminopeptidasas , Péptidos , Aminopeptidasas/metabolismo , Metaloproteasas/metabolismo , Sitios de Unión , Especificidad por Sustrato
8.
Biochim Biophys Acta Mol Basis Dis ; 1869(6): 166747, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37207905

RESUMEN

Neovascular inflammatory vitreoretinopathy (NIV) is a rare eye disease that ultimately leads to complete blindness and is caused by mutations in the gene encoding calpain-5 (CAPN5), with six pathogenic mutations identified. In transfected SH-SY5Y cells, five of the mutations resulted in decreased membrane association, diminished S-acylation, and reduced calcium-induced autoproteolysis of CAPN5. CAPN5 proteolysis of the autoimmune regulator AIRE was impacted by several NIV mutations. R243, L244, K250 and the adjacent V249 are on ß-strands in the protease core 2 domain. Conformational changes induced by Ca2+binding result in these ß-strands forming a ß-sheet and a hydrophobic pocket which docks W286 side chain away from the catalytic cleft, enabling calpain activation based on comparison with the Ca2+-bound CAPN1 protease core. The pathologic variants R243L, L244P, K250N, and R289W are predicted to disrupt the ß-strands, ß-sheet, and hydrophobic pocket, impairing calpain activation. The mechanism by which these variants impair membrane association is unclear. G376S impacts a conserved residue in the CBSW domain and is predicted to disrupt a loop containing acidic residues which may contribute to membrane binding. G267S did not impair membrane association and resulted in a slight but significant increase in autoproteolytic and proteolytic activity. However, G267S is also identified in individuals without NIV. Combined with the autosomal dominant pattern of NIV inheritance and evidence that CAPN5 may dimerize, the results are consistent with a dominant negative mechanism for the five pathogenic variants which resulted in impaired CAPN5 activity and membrane association and a gain-of-function for the G267S variant.


Asunto(s)
Neuroblastoma , Vitreorretinopatía Proliferativa , Humanos , Calpaína/genética , Calpaína/metabolismo , Vitreorretinopatía Proliferativa/genética , Vitreorretinopatía Proliferativa/patología , Mutación
9.
J Biol Chem ; 286(16): 13852-8, 2011 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-21343292

RESUMEN

Insulin-degrading enzyme (IDE) exists primarily as a dimer being unique among the zinc metalloproteases in that it exhibits allosteric kinetics with small synthetic peptide substrates. In addition the IDE reaction rate is increased by small peptides that bind to a distal site within the substrate binding site. We have generated mixed dimers of IDE in which one or both subunits contain mutations that affect activity. The mutation Y609F in the distal part of the substrate binding site of the active subunit blocks allosteric activation regardless of the activity of the other subunit. This effect shows that substrate or small peptide activation occurs through a cis effect. A mixed dimer composed of one wild-type subunit and the other subunit containing a mutation that neither permits substrate binding nor catalysis (H112Q) exhibits the same turnover number per active subunit as wild-type IDE. In contrast, a mixed dimer in which one subunit contains the wild-type sequence and the other contains a mutation that permits substrate binding, but not catalysis (E111F), exhibits a decrease in turnover number. This indicates a negative trans effect of substrate binding at the active site. On the other hand, activation in trans is observed with extended substrates that occupy both the active and distal sites. Comparison of the binding of an amyloid ß peptide analog to wild-type IDE and to the Y609F mutant showed no difference in affinity, indicating that Y609 does not play a significant role in substrate binding at the distal site.


Asunto(s)
Insulina/química , Insulina/metabolismo , Péptidos beta-Amiloides/química , Animales , Bradiquinina/química , Catálisis , Dominio Catalítico , Dicroismo Circular , Dimerización , Dinorfinas/química , Endorfinas/química , Humanos , Cinética , Peso Molecular , Mutación , Péptidos/química , Especificidad por Sustrato
10.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119298, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35643222

RESUMEN

Calpain-5 (CAPN5) is a member of the calpain family of calcium-activated neutral thiol proteases. CAPN5 is partly membrane associated, despite its lack of a transmembrane domain. Unlike classical calpains, CAPN5 contains a C-terminal C2 domain. C2 domains often have affinity to lipids, mediating membrane association. We recently reported that the C2 domain of CAPN5 was essential for its membrane association and the activation of its autolytic activity. However, despite the removal of the C2 domain by autolysis, the N-terminal fragment of CAPN5 remained membrane associated. S-acylation, also referred to as S-palmitoylation, is a reversible post-translational lipid modification of cysteine residues that promotes membrane association of soluble proteins. In the present study several S-acylated cysteine residues were identified in CAPN5 with the acyl-PEG exchange method. Data reported here demonstrate that CAPN5 is S-acylated on up to three cysteine residues including Cys-4 and Cys-512, and likely Cys-507. The D589N mutation in a potential calcium binding loop within the C2 domain interfered with the S-acylation of CAPN5, likely preventing initial membrane association. Mutating specific cysteine residues of CAPN5 interfered with both its membrane association and the activation of CAPN5 autolysis. Taken together, our results suggest that the S-acylation of CAPN5 is critical for its membrane localization which appears to favor its enzymatic activity.


Asunto(s)
Calpaína , Cisteína , Acilación , Calcio/metabolismo , Calpaína/genética , Calpaína/metabolismo , Cisteína/genética , Cisteína/metabolismo , Lipoilación
11.
Biochim Biophys Acta Mol Cell Res ; 1868(7): 119019, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33811937

RESUMEN

The enzymatic characteristics of the ubiquitous calpain 5 (CAPN5) remain undescribed despite its high expression in the central nervous system and links to eye development and disease. CAPN5 contains the typical protease core domains but lacks the C terminal penta-EF hand domain of classical calpains, and instead contains a putative C2 domain. This study used the SH-SY5Y neuroblastoma cell line stably transfected with CAPN5-3xFLAG variants to assess the potential roles of the CAPN5 C2 domain in Ca2+ regulated enzyme activity and intracellular localization. Calcium dependent autoproteolysis of CAPN5 was documented and characterized. Mutation of the catalytic Cys81 to Ala or addition of EGTA prevented autolysis. Eighty µM Ca2+ was sufficient to stimulate half-maximal CAPN5 autolysis in cellular lysates. CAPN5 autolysis was inhibited by tri-leucine peptidyl aldehydes, but less effectively by di-Leu aldehydes, consistent with a more open conformation of the protease core relative to classical calpains. In silico modeling revealed a type II topology C2 domain including loops with the potential to bind calcium. Mutation of the acidic amino acid residues predicted to participate in Ca2+ binding, particularly Asp531 and Asp589, resulted in a decrease of CAPN5 membrane association. These residues were also found to be invariant in several genomes. The autolytic fragment of CAPN5 was prevalent in membrane-enriched fractions, but not in cytosolic fractions, suggesting that membrane association facilitates the autoproteolytic activity of CAPN5. Together, these results demonstrate that CAPN5 undergoes Ca2+-activated autoproteolytic processing and suggest that CAPN5 association with membranes enhances CAPN5 autolysis.


Asunto(s)
Dominios C2/fisiología , Calpaína/genética , Calpaína/metabolismo , Secuencia de Aminoácidos/genética , Dominios C2/genética , Movimiento Celular , Activación Enzimática/genética , Humanos , Modelos Moleculares , Mutación/genética , Conformación Proteica , Dominios Proteicos/fisiología
12.
Eur Biophys J ; 39(3): 389-96, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19238377

RESUMEN

Accurate partial-specific volume ([Formula: see text]) values are required for sedimentation velocity and sedimentation equilibrium analyses. For nucleic acids, the estimation of these values is complicated by the fact that [Formula: see text] depends on base composition, secondary structure, solvation and the concentrations and identities of ions in the surrounding buffer. Here we describe sedimentation equilibrium measurements of the apparent isopotential partial-specific volume /' for two G-quadruplex DNAs and a single-stranded DNA of similar molecular weight and base composition. The G-quadruplex DNAs are a 22 nucleotide fragment of the human telomere consensus sequence and a 27 nucleotide fragment from the human c-myc promoter. The single-stranded DNA is 26 nucleotides long and is designed to have low propensity to form secondary structures. Parallel measurements were made in buffers containing NaCl and in buffers containing KCl, spanning the range 0.09 M

Asunto(s)
ADN/química , G-Cuádruplex , Secuencia de Bases , ADN de Cadena Simple/química , Humanos , Modelos Moleculares , Peso Molecular , Conformación de Ácido Nucleico , Cloruro de Potasio/química , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/química , Proteínas Proto-Oncogénicas c-myc/genética , Cloruro de Sodio/química , Telómero/genética
13.
Mol Immunol ; 118: 110-116, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31869742

RESUMEN

The accurate transmission of signals by the canonical ERK1/2 kinase pathway critically relies on the proper assembly of an intricate multiprotein complex by the scaffold protein Shoc2. However, the details of the mechanism by which Shoc2 guides ERK1/2 signals are not clear, in part, due to the lack of research tools targeting specific protein binding moieties of Shoc2. We report generation and characterization of single domain antibodies against human Shoc2 using a universal synthetic library of humanized nanobodies. Our results identify eight synthetic single-domain antibodies and show that two evaluated antibodies have binding affinities to Shoc2 in the nanomolar range. High affinity antibodies were uniquely suited for the analysis of the Shoc2 complex assembly. Selected single-domain antibodies were also functional in intracellular assays. This study illustrates that Shoc2 single-domain antibodies can be used to understand functional mechanisms governing complex multiprotein signaling modules and have promise in application for therapies that require modulation of the ERK1/2-associated diseases.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/inmunología , Transducción de Señal/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Células HEK293 , Humanos , Sistema de Señalización de MAP Quinasas/inmunología , Unión Proteica/inmunología
14.
Biochem J ; 413(3): 417-27, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18412546

RESUMEN

The crystal structure of AtPDF1B [Arabidopsis thaliana PDF (peptide deformylase) 1B; EC 3.5.1.88], a plant specific deformylase, has been determined at a resolution of 2.4 A (1 A=0.1 nm). The overall fold of AtPDF1B is similar to other peptide deformylases that have been reported. Evidence from the crystal structure and gel filtration chromatography indicates that AtPDF1B exists as a symmetric dimer. PDF1B is essential in plants and has a preferred substrate specificity towards the PS II (photosystem II) D1 polypeptide. Comparative analysis of AtPDF1B, AtPDF1A, and the type 1B deformylase from Escherichia coli, identifies a number of differences in substrate binding subsites that might account for variations in sequence preference. A model of the N-terminal five amino acids from the D1 polypeptide bound in the active site of AtPDF1B suggests an influence of Tyr(178) as a structural determinant for polypeptide substrate specificity through hydrogen bonding with Thr(2) in the D1 sequence. Kinetic analyses using a polypeptide mimic of the D1 N-terminus was performed on AtPDF1B mutated at Tyr(178) to alanine, phenylalanine or arginine (equivalent residue in AtPDF1A). The results suggest that, whereas Tyr(178) can influence catalytic activity, other residues contribute to the overall preference for the D1 polypeptide.


Asunto(s)
Agricultura/métodos , Amidohidrolasas/química , Amidohidrolasas/metabolismo , Biotecnología/métodos , Amidohidrolasas/genética , Secuencia de Aminoácidos , Arabidopsis/enzimología , Arabidopsis/genética , Cristalografía por Rayos X , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Tirosina/metabolismo
15.
Curr Alzheimer Res ; 5(2): 225-31, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18393807

RESUMEN

Neprilysin is a zinc metalloendopeptidase with relatively broad substrate specificity. The enzyme is localized to the plasma membrane of cells where it can function to degrade extracellular peptides. Structural studies show that neprilysin preferentially cleaves peptides on the amino side of hydrophobic amino acids. Neprilysin has been implicated in the catabolism of amyloid beta peptides in the brain and as such has received considerable attention, particularly as a therapeutic target for Alzheimer's disease. An inverse relationship between neprilysin levels and amyloid beta peptide levels and between neprilysin levels and amyloid plaque formation has been observed in human brain. Neprilysin levels decline with aging in the temporal and frontal cortex possibly contributing to higher amyloid beta peptide levels. A number of studies have shown that increasing neprilysin levels in the brain leads to a decrease in brain amyloid beta peptide levels. Most recently a potential relationship between amyloid beta peptide synthesis from the amyloid precursor protein and neprilysin activity has been proposed.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Neprilisina/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/enzimología , Enfermedad de Alzheimer/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Catálisis , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/fisiología , Humanos , Datos de Secuencia Molecular , Neprilisina/química , Neprilisina/genética , Neprilisina/uso terapéutico
16.
Sci Rep ; 8(1): 2335, 2018 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29402917

RESUMEN

Insulin-degrading enzyme (IDE) functions in the catabolism of bioactive peptides. Established roles include degrading insulin and the amyloid beta peptide (Aß), linking it to diabetes and Alzheimer's disease. IDE is primarily located in the cytosol, and a longstanding question is how it gains access to its peptide substrates. Reports suggest that IDE secreted by an unconventional pathway participates in extracellular hydrolysis of insulin and Aß. We find that IDE release from cultured HEK-293 or BV-2 cells represents only ~1% of total cellular IDE, far less than has been reported previously. Importantly, lactate dehydrogenase (LDH) and other cytosolic enzymes are released at the same relative level, indicating that extracellular IDE results from a loss of cell integrity, not secretion. Lovastatin increases IDE release from BV-2 cells as reported, but this release is mirrored by LDH release. Cell viability assays indicate lovastatin causes a loss of cell integrity, explaining its effect on IDE release. IDE is present in an exosome-enriched fraction from BV-2 cell conditioned media, however it represents only ~0.01% of the total cellular enzyme and is unlikely to be a significant source of IDE. These results call into question the secretion of IDE and its importance in extracellular peptide degradation.


Asunto(s)
Insulisina/metabolismo , Vías Secretoras , Supervivencia Celular , Exosomas/metabolismo , Células HEK293 , Humanos
17.
Structure ; 25(7): 978-987.e4, 2017 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-28578873

RESUMEN

Nitroreductase (NR) from Enterobacter cloacae reduces diverse nitroaromatics including herbicides, explosives, and prodrugs, and holds promise for bioremediation, prodrug activation, and enzyme-assisted synthesis. We solved crystal structures of NR complexes with bound substrate or analog for each of its two half-reactions. We complemented these with kinetic isotope effect (KIE) measurements elucidating H-transfer steps essential to each half-reaction. KIEs indicate hydride transfer from NADH to the flavin consistent with our structure of NR with the NADH analog nicotinic acid adenine dinucleotide (NAAD). The KIE on reduction of p-nitrobenzoic acid (p-NBA) also indicates hydride transfer, and requires revision of prior computational mechanisms. Our mechanistic information provided a structural restraint for the orientation of bound substrate, placing the nitro group closer to the flavin N5 in the pocket that binds the amide of NADH. KIEs show that solvent provides a proton, enabling accommodation of different nitro group placements, consistent with the broad repertoire of NR.


Asunto(s)
Proteínas Bacterianas/química , Nitrorreductasas/química , Proteínas Bacterianas/metabolismo , Sitios de Unión , Enterobacter cloacae/enzimología , Flavinas/metabolismo , NAD/metabolismo , Nitrobenzoatos/metabolismo , Nitrorreductasas/metabolismo , Unión Proteica , Especificidad por Sustrato
18.
Int J Parasitol ; 46(8): 485-93, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27025771

RESUMEN

Intestinal parasites are a concern in veterinary medicine worldwide and for human health in the developing world. Infections are identified by microscopic visualisation of parasite eggs in faeces, which is time-consuming, requires technical expertise and is impractical for use on-site. For these reasons, recommendations for parasite surveillance are not widely adopted and parasite control is based on administration of rote prophylactic treatments with anthelmintic drugs. This approach is known to promote anthelmintic resistance, so there is a pronounced need for a convenient egg counting assay to promote good clinical practice. Using a fluorescent chitin-binding protein, we show that this structural carbohydrate is present and accessible in shells of ova of strongyle, ascarid, trichurid and coccidian parasites. Furthermore, we show that a cellular smartphone can be used as an inexpensive device to image fluorescent eggs and, by harnessing the computational power of the phone, to perform image analysis to count the eggs. Strongyle egg counts generated by the smartphone system had a significant linear correlation with manual McMaster counts (R(2)=0.98), but with a significantly lower coefficient of variation (P=0.0177). Furthermore, the system was capable of differentiating equine strongyle and ascarid eggs similar to the McMaster method, but with significantly lower coefficients of variation (P<0.0001). This demonstrates the feasibility of a simple, automated on-site test to detect and/or enumerate parasite eggs in mammalian faeces without the need for a laboratory microscope, and highlights the potential of smartphones as relatively sophisticated, inexpensive and portable medical diagnostic devices.


Asunto(s)
Heces/parasitología , Colorantes Fluorescentes , Procesamiento de Imagen Asistido por Computador/métodos , Recuento de Huevos de Parásitos/métodos , Teléfono Inteligente , Animales , Ascarídidos/aislamiento & purificación , Gatos , Bovinos , Quitina/metabolismo , Perros , Filtración/instrumentación , Cabras , Caballos , Procesamiento de Imagen Asistido por Computador/instrumentación , Recuento de Huevos de Parásitos/instrumentación , Ovinos , Strongyloidea/aislamiento & purificación
19.
PLoS One ; 10(7): e0133114, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26186535

RESUMEN

Insulin degrading enzyme (IDE) is believed to be the major enzyme that metabolizes insulin and has been implicated in the degradation of a number of other bioactive peptides, including amyloid beta peptide (Aß), glucagon, amylin, and atrial natriuretic peptide. IDE is activated toward some substrates by both peptides and polyanions/anions, possibly representing an important control mechanism and a potential therapeutic target. A binding site for the polyanion ATP has previously been defined crystallographically, but mutagenesis studies suggest that other polyanion binding modes likely exist on the same extended surface that forms one wall of the substrate-binding chamber. Here we use a computational approach to define three potential ATP binding sites and mutagenesis and kinetic studies to confirm the relevance of these sites. Mutations were made at four positively charged residues (Arg 429, Arg 431, Arg 847, Lys 898) within the polyanion-binding region, converting them to polar or hydrophobic residues. We find that mutations in all three ATP binding sites strongly decrease the degree of activation by ATP and can lower basal activity and cooperativity. Computational analysis suggests conformational changes that result from polyanion binding as well as from mutating residues involved in polyanion binding. These findings indicate the presence of multiple polyanion binding modes and suggest the anion-binding surface plays an important conformational role in controlling IDE activity.


Asunto(s)
Insulisina/química , Polímeros/química , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Deuterio/química , Hidrógeno/química , Insulisina/genética , Insulisina/metabolismo , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Datos de Secuencia Molecular , Mutación , Polielectrolitos , Unión Proteica
20.
Toxicol Sci ; 145(1): 128-37, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25673500

RESUMEN

Levels of amyloid beta (Aß) in the central nervous system are regulated by the balance between its synthesis and degradation. Neprilysin (NEP) is associated with Alzheimer's disease (AD) by its ability to degrade Aß. Some studies have involved the exposure to mercury (Hg) in AD pathogenesis; therefore, our aim was to investigate the effects on the anabolism and catabolism of Aß in differentiated SH-SY5Y cells incubated with 1-20 µM of Hg. Exposure to 20 µM of Hg induced an increase in Aß-42 secretion, but did not increase the expression of the amyloid precursor protein (APP). Hg incubation (10 and 20 µM) increased NEP protein levels; however, it did not change NEP mRNA levels nor the levels of the amyloid intracellular domain peptide, a protein fragment with transcriptional activity. Interestingly, Hg reduced NEP activity at 10 and 20 µM, and circular dichroism analysis using human recombinant NEP showed conformational changes after incubation with molar equivalents of Hg. This suggests that the Hg-induced inhibition of NEP activity may be mediated by a conformational change resulting in reduced Aß-42 degradation. Finally, the comparative effects of lead (Pb, 50 µM) were evaluated. We found a significant increase in Aß-42 levels and a dramatic increase in APP protein levels; however, no alteration in NEP levels was observed nor in the enzymatic activity of this metalloprotease, despite the fact that Pb slightly modified the rhNEP conformation. Overall, our data suggest that Hg and Pb increase Aß levels by different mechanisms.


Asunto(s)
Diferenciación Celular , Mercurio/toxicidad , Neprilisina/metabolismo , Línea Celular Tumoral , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA