Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Cell Sci ; 126(Pt 7): 1565-75, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-23418357

RESUMEN

Tight junctions (TJs) regulate the paracellular movement of ions, macromolecules and immune cells across epithelia. Zonula occludens (ZO)-1 is a multi-domain polypeptide required for the assembly of TJs. MDCK II cells lacking ZO-1, and its homolog ZO-2, have three distinct phenotypes: reduced localization of occludin and some claudins to the TJs, increased epithelial permeability, and expansion of the apical actomyosin contractile array found at the apical junction complex (AJC). However, it is unclear exactly which ZO-1 binding domains are required to coordinate these activities. We addressed this question by examining the ability of ZO-1 domain-deletion transgenes to reverse the effects of ZO depletion. We found that the SH3 domain and the U5 motif are required to recruit ZO-1 to the AJC and that localization is a prerequisite for normal TJ and cytoskeletal organization. The PDZ2 domain is not required for localization of ZO-1 to the AJC, but is necessary to establish the characteristic continuous circumferential band of ZO-1, occludin and claudin-2. PDZ2 is also required to establish normal permeability, but is not required for normal cytoskeletal organization. Finally, our results demonstrate that PDZ1 is crucial for the normal organization of both the TJ and the AJC cytoskeleton. Our results establish that ZO-1 acts as a true scaffolding protein and that the coordinated activity of multiple domains is required for normal TJ structure and function.


Asunto(s)
Uniones Estrechas/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Western Blotting , Línea Celular , Permeabilidad de la Membrana Celular/fisiología , Claudina-2/metabolismo , Perros , Humanos , Inmunohistoquímica , Inmunoprecipitación , Unión Proteica
2.
Circ Res ; 99(6): 583-9, 2006 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-16931798

RESUMEN

Cardiac malformations constitute the most common birth defects, of which heart septal and valve defects are the most frequent forms diagnosed in infancy. These cardiac structures arise from the endocardial cushions through dynamic interactions between cells and the extracellular matrix (cardiac jelly). Targeted deletion of the hyaluronan synthase-2 (Has2) gene in mice results in an absence of hyaluronan (HA), cardiac jelly, and endocardial cushions, a loss of vascular integrity, and death at embryonic day 9.5. Despite the requirements for Has2 and its product, HA, in the developing heart, little is known about the normal processing and removal of HA during development. Cell culture studies show that HA obtains new bioactivity after depolymerization into small oligosaccharides. We previously showed reduction in Has2 expression and diminished presence of HA at later stages of heart development as tissue remodeling formed the leaflets of the cardiac valves. Here we show that small oligosaccharide forms of HA (o-HA) act antagonistically to developmental epithelial-to-mesenchymal transformation (EMT), which is required to generate the progenitor cells that populate the endocardial cushions. We further show that o-HA induces vascular endothelial growth factor (VEGF), which acts as a negative regulator of EMT. This is the first report illustrating a functional link between oligosaccharide HA and VEGF. Collectively, our data indicate that following endocardial cell EMT, native HA is likely processed to o-HA, which stimulates VEGF activity to attenuate cardiac developmental EMT.


Asunto(s)
Inducción Embrionaria , Células Endoteliales/citología , Epitelio/embriología , Corazón/embriología , Ácido Hialurónico/farmacología , Mesodermo/citología , Factor A de Crecimiento Endotelial Vascular/genética , Animales , Células Cultivadas , Embrión de Pollo , Embrión de Mamíferos , Regulación de la Expresión Génica , Corazón/crecimiento & desarrollo , Ácido Hialurónico/metabolismo , Ratones , Oligosacáridos/farmacología
3.
Toxicol Pathol ; 36(6): 805-17, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18812580

RESUMEN

Chronic ingestion of arsenic is associated with increased incidence of respiratory and cardiovascular diseases. To investigate the role of arsenic in early events in vascular pathology, C57BL/6 mice ingested drinking water with or without 50 ppb sodium arsenite (AsIII) for four, five, or eight weeks. At five and eight weeks, RNA from the lungs of control and AsIII-exposed animals was processed for microarray. Sixty-five genes were significantly and differentially expressed. Differential expression of extracellular matrix (ECM) gene transcripts was particularly compelling, as 91% of genes in this category, including elastin and collagen, were significantly decreased. In additional experiments, real-time RT-PCR showed an AsIII-induced decrease in many of these ECM gene transcripts in the heart and NIH3T3 fibroblast cells. Histological stains for collagen and elastin show a distinct disruption in the ECM surrounding small arteries in the heart and lung of AsIII-exposed mice. Immunohistochemical detection of alpha-smooth muscle actin in blood vessel walls was decreased in the AsIII-exposed animals. These data reveal a functional link between AsIII exposure and disruption in the vascular ECM. These AsIII-induced early pathological events may predispose humans to respiratory and cardiovascular diseases linked to chronic low-dose AsIII exposure.


Asunto(s)
Arsenitos/toxicidad , Vasos Sanguíneos/efectos de los fármacos , Proteínas de la Matriz Extracelular/genética , Expresión Génica/efectos de los fármacos , Miocardio/patología , Compuestos de Sodio/toxicidad , Animales , Arsénico/toxicidad , Arsenitos/administración & dosificación , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Colágeno/genética , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/patología , Elastina/genética , Proteínas de Choque Térmico/genética , Procesamiento de Imagen Asistido por Computador , Inmunohistoquímica , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Compuestos de Sodio/administración & dosificación
4.
Cytoskeleton (Hoboken) ; 68(12): 653-60, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22083950

RESUMEN

The actin cytoskeleton is a dynamic structure necessary for cell and tissue organization, including the maintenance of epithelial barriers. The epithelial barrier regulates the movement of ions, macromolecules, immune cells, and pathogens, and is thus essential for normal organ function. Disruption in the epithelial barrier has been shown to coincide with alterations of the actin cytoskeleton in several disease states. These disruptions primarily manifest as increased movement through the paracellular space, which is normally regulated by tight junctions (TJ). Despite extensive research demonstrating a direct link between the actin cytoskeleton and epithelial permeability, our understanding of the physiological mechanisms that link permeability and tight junction structure are still limited. In this review, we explore the role of the actin cytoskeleton at TJ and present several areas for future study.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Células Epiteliales/metabolismo , Uniones Estrechas/metabolismo , Animales , Permeabilidad de la Membrana Celular/fisiología , Humanos
5.
Cytotechnology ; 59(2): 93-102, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19475494

RESUMEN

In vitro cultures of cardiomyocytes have proven to be a useful tool for toxicological, pharmacological, and developmental studies, as well as for the study of the cellular and molecular mechanisms responsible for proper myocyte function. One deficient area of research is that of myocyte proliferation. Cardiomyocyte proliferation dramatically diminishes soon after birth and has a very limited occurrence within the adult heart, thus limiting the use of adult cells for proliferation studies. An improved understanding of the requirements for myocyte proliferation will allow for the development of better approaches to repair damaged heart tissue. Here, we provide a protocol for the reliable isolation of embryonic mouse myocytes. These myocytes behave similarly to those in vivo, including their ability to proliferate, providing an ideal system for the study of cardiomyocyte proliferation.

6.
Dev Dyn ; 237(1): 145-52, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18058923

RESUMEN

In the mammalian system the proepicardium (PE) arises from mesothelium of the septum transversum before translocation to the heart where it forms the epicardium and progenitor cells of the coronary vessels. Despite its importance, the process in which PE cells translocate to the myocardium in mammals is not well defined. The current paradigm states that cellular cysts of PE float across the pericardial space and contact the outer surface of the myocardium. This mechanism does not provide a satisfactory explanation for the directionality or localization of PE migration. To better define PE migration, we performed a detailed study of mouse PE development. We provide thorough documentation that redefines the size of the PE migratory field and the mechanism of migration. Our new model incorporates differential growth and direct contact between multicellular PE villi and the myocardium as mechanisms in formation of the epicardium.


Asunto(s)
Movimiento Celular/fisiología , Corazón/embriología , Miocardio/citología , Pericardio/citología , Animales , Diferenciación Celular/fisiología , Proliferación Celular , Vasos Coronarios/citología , Vasos Coronarios/ultraestructura , Femenino , Ratones , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Modelos Biológicos , Miocardio/ultraestructura , Pericardio/ultraestructura , Embarazo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA