Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Obes (Lond) ; 46(7): 1394-1402, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35523954

RESUMEN

BACKGROUND: Grape-seed proanthocyanidin extract (GSPE) improve white adipose tissue (WAT) expansion during diet-induced obesity. However, because adipose metabolism is synchronized by circadian rhythms, it is plausible to speculate that the bioactivity of dietary proanthocyanidins could be influenced by the time-of-day in which they are consumed. Therefore, the aim of the present study was to determine the interaction between zeitgeber time (ZT) and GSPE consumption on the functionality of WAT in rats with diet-induced obesity. METHODS: Male Wistar rats were fed a cafeteria diet for 9 weeks. After 5 weeks, the animals were supplemented with 25 mg GSPE/kg for 4 weeks at the beginning of the light/rest phase (ZT0) or of the dark/active phase (ZT12). Body fat content was determined by nuclear magnetic resonance and histological analyses were performed in the epididymal (EWAT) and inguinal (IWAT) fat depots to determine adipocyte size and number. In addition, the expression of genes related to adipose metabolism and circadian clock function were analyzed by qPCR. RESULTS: GSPE consumption at ZT0 was associated with a potential antidiabetic effect without affecting adiposity and energy intake and downregulating the gene expression of inflammatory markers in EWAT. In contrast, GSPE consumption at ZT12 improved adipose tissue expansion decreasing adipocyte size in IWAT. In accordance with this adipogenic activity, the expression of genes involved in fatty acid metabolism were downregulated at ZT12 in IWAT. In turn, GSPE consumption at ZT12, but not at ZT0, repressed the expression of the clock gene Cry1 in IWAT. CONCLUSIONS: The interaction between ZT and GSPE consumption influenced the metabolic response of WAT in a tissue-specific manner. Understanding the impact of circadian clock on adipose metabolism and how this is regulated by polyphenols will provide new insights for the management of obesity.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta , Extracto de Semillas de Uva/farmacología , Masculino , Obesidad/metabolismo , Proantocianidinas/farmacología , Ratas , Ratas Wistar
2.
Nucleic Acids Res ; 45(10): 5757-5769, 2017 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-28334833

RESUMEN

LuxR-type transcription factors control diverse physiological functions necessary for bacterial adaptation to environmental changes. In the intracellular pathogen Brucella, the LuxR homolog VjbR has been shown to regulate the expression of virulence factors acting at early stages of the intracellular infection and, directly or indirectly, hundreds of additional genes. However, the precise determination of VjbR direct targets has so far proved elusive. Here, we performed chromatin immunoprecipitation of VjbR followed by next-generation sequencing (ChIP-seq). We detected a large amount of VjbR-binding sites distributed across the Brucella genome and determined a markedly asymmetric binding consensus motif, an unusual feature among LuxR-type regulators. RNA-seq analysis performed under conditions mimicking the eukaryotic intracellular environment revealed that, among all loci associated to VjbR-binding, this regulator directly modulated the expression of only a subset of genes encoding functions consistent with an intracellular adaptation strategy for survival during the initial stages of the host cell infection. Other VjbR-binding events, however, showed to be dissociated from transcription and may require different environmental signals to produce a transcriptional output. Taken together, our results bring new insights into the extent and functionality of LuxR-type-related transcriptional networks.


Asunto(s)
Proteínas Bacterianas/genética , Brucella abortus/genética , Brucella abortus/patogenicidad , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Proteínas Represoras/genética , Transactivadores/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , Brucella abortus/metabolismo , Inmunoprecipitación de Cromatina , Secuenciación de Nucleótidos de Alto Rendimiento , Motivos de Nucleótidos , Unión Proteica , Percepción de Quorum/genética , Proteínas Represoras/metabolismo , Transactivadores/metabolismo , Transcripción Genética , Virulencia
3.
Mol Nutr Food Res ; 67(17): e2300035, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37423963

RESUMEN

SCOPE: Variations in photoperiod patterns drive metabolic adaptations in mammals, involving important changes in body weight and adiposity. Moreover, (poly)phenols can help heterotrophs adopt metabolic adaptations to face the upcoming environmental conditions. Particularly, proanthocyanidins from grape-seeds show photoperiod-dependent effects on different metabolic parameters. The present study aims to explore whether grape-seed proanthocyanidin extract (GSPE) consumption differently affects the expression of metabolic markers in WAT (subcutaneous and visceral depots) and BAT in a photoperiod-dependent manner. METHODS AND RESULTS: GSPE (25 mg kg-1  day-1 ) is orally administrated for 4 weeks to healthy rats exposed to three photoperiods (L6, L12, and L18). In WAT, GSPE consumption significantly upregulates the expression of lipolytic genes in all photoperiods, being accompanied by increased serum concentrations of glycerol and corticosterone only under the L6 photoperiod. Moreover, adiponectin mRNA levels are significantly upregulated in response to GSPE regardless of the photoperiod, whereas Tnfα and Il6 expression are only downregulated in L6 and L18 photoperiods but not in L12. In BAT, GSPE upregulates Pgc1α expression in all groups, whereas the expression of Pparα is only increased in L18. CONCLUSIONS: The results indicate that GSPE modulates the expression of important metabolic markers of WAT and BAT in a photoperiod-dependent manner.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Vitis , Ratas , Animales , Proantocianidinas/farmacología , Fotoperiodo , Extracto de Semillas de Uva/farmacología , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Mamíferos
4.
Biomolecules ; 12(6)2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35740964

RESUMEN

Seasonality is gaining attention in the modulation of some physiological and metabolic functions in mammals. Furthermore, the consumption of natural compounds, such as GSPE, is steadily increasing. Consequently, in order to study the interaction of seasonal variations in day length over natural compounds' molecular effects, we carried out an animal study using photo-sensitive rats which were chronically exposed for 9 weeks to three photoperiods (L6, L18, and L12) in order to mimic the day length of different seasons (winter/summer/and autumn-spring). In parallel, animals were also treated either with GSPE 25 (mg/kg) or vehicle (VH) for 4 weeks. Interestingly, a seasonal-dependent GSPE modulation on the hepatic glucose and lipid metabolism was observed. For example, some metabolic genes from the liver (SREBP-1c, Gk, Acacα) changed their expression due to seasonality. Furthermore, the metabolomic results also indicated a seasonal influence on the GSPE effects associated with glucose-6-phosphate, D-glucose, and D-ribose, among others. These differential effects, which were also reflected in some plasmatic parameters (i.e., glucose and triglycerides) and hormones (corticosterone and melatonin), were also associated with significant changes in the expression of several hepatic circadian clock genes (Bmal1, Cry1, and Nr1d1) and ER stress genes (Atf6, Grp78, and Chop). Our results point out the importance of circannual rhythms in regulating metabolic homeostasis and suggest that seasonal variations (long or short photoperiods) affect hepatic metabolism in rats. Furthermore, they suggest that procyanidin consumption could be useful for the modulation of the photoperiod-dependent changes on glucose and lipid metabolism, whose alterations could be related to metabolic diseases (e.g., diabetes, obesity, and cardiovascular disease). Furthermore, even though the GSPE effect is not restricted to a specific photoperiod, our results suggest a more significant effect in the L18 condition.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Vitis , Animales , Glucosa/metabolismo , Extracto de Semillas de Uva/farmacología , Metabolismo de los Lípidos , Hígado/metabolismo , Mamíferos/metabolismo , Proantocianidinas/farmacología , Ratas , Ratas Endogámicas F344 , Estaciones del Año , Vitis/metabolismo
5.
Nutrients ; 14(11)2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35684049

RESUMEN

Consumption of grape seed proanthocyanidin extract (GSPE) has beneficial effects on the functionality of white adipose tissue (WAT). However, although WAT metabolism shows a clear diurnal rhythm, whether GSPE consumption could affect WAT rhythmicity in a time-dependent manner has not been studied. Ninety-six male Fischer rats were fed standard (STD, two groups) or cafeteria (CAF, four groups) diet for 9 weeks (n = 16 each group). From week 6 on, CAF diet animals were supplemented with vehicle or 25 mg GSPE/kg of body weight either at the beginning of the light/rest phase (ZT0) or at the beginning of the dark/active phase (ZT12). The two STD groups were also supplemented with vehicle at ZT0 or ZT12. In week 9, animals were sacrificed at 6 h intervals (n = 4) to analyze the diurnal rhythms of subcutaneous WAT metabolites by nuclear magnetic resonance spectrometry. A total of 45 metabolites were detected, 19 of which presented diurnal rhythms in the STD groups. Although most metabolites became arrhythmic under CAF diet, GSPE consumption at ZT12, but not at ZT0, restored the rhythmicity of 12 metabolites including compounds involved in alanine, aspartate, and glutamate metabolism. These results demonstrate that timed GSPE supplementation may restore, at least partially, the functional dynamics of WAT when it is consumed at the beginning of the active phase. This study opens an innovative strategy for time-dependent polyphenol treatment in obesity and metabolic diseases.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Enfermedades de Transmisión Sexual , Tejido Adiposo Blanco , Animales , Ritmo Circadiano , Extracto de Semillas de Uva/farmacología , Masculino , Proantocianidinas/farmacología , Ratas , Ratas Wistar
6.
Nutrients ; 14(4)2022 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-35215423

RESUMEN

Major susceptibility to alterations in liver function (e.g., hepatic steatosis) in a prone environment due to circadian misalignments represents a common consequence of recent sociobiological behavior (i.e., food excess and sleep deprivation). Natural compounds and, more concisely, polyphenols have been shown as an interesting tool for fighting against metabolic syndrome and related consequences. Furthermore, mitochondria have been identified as an important target for mediation of the health effects of these compounds. Additionally, mitochondrial function and dynamics are strongly regulated in a circadian way. Thus, we wondered whether some of the beneficial effects of grape-seed procyanidin extract (GSPE) on metabolic syndrome could be mediated by a circadian modulation of mitochondrial homeostasis. For this purpose, rats were subjected to "standard", "cafeteria" and "cafeteria diet + GSPE" treatments (n = 4/group) for 9 weeks (the last 4 weeks, GSPE/vehicle) of treatment, administering the extract/vehicle at diurnal or nocturnal times (ZT0 or ZT12). For circadian assessment, one hour after turning the light on (ZT1), animals were sacrificed every 6 h (ZT1, ZT7, ZT13 and ZT19). Interestingly, GSPE was able to restore the rhythm on clock hepatic genes (Bmal1, Per2, Cry1, Rorα), as this correction was more evident in nocturnal treatment. Additionally, during nocturnal treatment, an increase in hepatic fusion genes and a decrease in fission genes were observed. Regarding mitochondrial complex activity, there was a strong effect of cafeteria diet at nearly all ZTs, and GSPE was able to restore activity at discrete ZTs, mainly in the diurnal treatment (ZT0). Furthermore, a differential behavior was observed in tricarboxylic acid (TCA) metabolites between GSPE diurnal and nocturnal administration times. Therefore, GSPE may serve as a nutritional preventive strategy in the recovery of hepatic-related metabolic disease by modulating mitochondrial dynamics, which is concomitant to the restoration of the hepatic circadian machinery.


Asunto(s)
Extracto de Semillas de Uva , Proantocianidinas , Vitis , Animales , Dieta , Extracto de Semillas de Uva/farmacología , Hígado/metabolismo , Dinámicas Mitocondriales , Obesidad/tratamiento farmacológico , Obesidad/etiología , Obesidad/metabolismo , Proantocianidinas/metabolismo , Proantocianidinas/farmacología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA