Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 30(1): e17077, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38273583

RESUMEN

Deforestation of tropical rainforests is a major land use change that alters terrestrial biogeochemical cycling at local to global scales. Deforestation and subsequent reforestation are likely to impact soil phosphorus (P) cycling, which in P-limited ecosystems such as the Amazon basin has implications for long-term productivity. We used a 100-year replicated observational chronosequence of primary forest conversion to pasture, as well as a 13-year-old secondary forest, to test land use change and duration effects on soil P dynamics in the Amazon basin. By combining sequential extraction and P K-edge X-ray absorption near edge structure (XANES) spectroscopy with soil phosphatase activity assays, we assessed pools and process rates of P cycling in surface soils (0-10 cm depth). Deforestation caused increases in total P (135-398 mg kg-1 ), total organic P (Po ) (19-168 mg kg-1 ), and total inorganic P (Pi ) (30-113 mg kg-1 ) fractions in surface soils with pasture age, with concomitant increases in Pi fractions corroborated by sequential fractionation and XANES spectroscopy. Soil non-labile Po (10-148 mg kg-1 ) increased disproportionately compared to labile Po (from 4-5 to 7-13 mg kg-1 ). Soil phosphomonoesterase and phosphodiesterase binding affinity (Km ) decreased while the specificity constant (Ka ) increased by 83%-159% in 39-100y pastures. Soil P pools and process rates reverted to magnitudes similar to primary forests within 13 years of pasture abandonment. However, the relatively short but representative pre-abandonment pasture duration of our secondary forest may not have entailed significant deforestation effects on soil P cycling, highlighting the need to consider both pasture duration and reforestation age in evaluations of Amazon land use legacies. Although the space-for-time substitution design can entail variation in the initial soil P pools due to atmospheric P deposition, soil properties, and/or primary forest growth, the trend of P pools and process rates with pasture age still provides valuable insights.


Asunto(s)
Bosque Lluvioso , Suelo , Suelo/química , Fósforo , Ecosistema , Conservación de los Recursos Naturales , Bosques
2.
Environ Res ; 212(Pt A): 113139, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35337832

RESUMEN

Climatic changes are altering precipitation patterns in the Amazon and may influence soil methane (CH4) fluxes due to the differential responses of methanogenic and methanotrophic microorganisms. However, it remains unclear if these climate feedbacks can amplify land-use-related impacts on the CH4 cycle. To better predict the responses of soil CH4-cycling microorganisms and emissions under altered moisture levels in the Eastern Brazilian Amazon, we performed a 30-day microcosm experiment manipulating the moisture content (original moisture; 60%, 80%, and 100% of field capacity - FC) of forest and pasture soils. Gas samples were collected periodically for gas chromatography analysis, and methanogenic archaeal and methanotrophic bacterial communities were assessed using quantitative PCR and metagenomics. Positive and negative daily CH4 fluxes were observed for forest and pasture, indicating that these soils can act as both CH4 sources and sinks. Cumulative emissions and the abundance of methanogenesis-related genes and taxonomic groups were affected by land use, moisture, and their interaction. Pasture soils at 100% FC had the highest abundance of methanogens and CH4 emissions, 22 times higher than forest soils under the same treatment. Higher ratios of methanogens to methanotrophs were found in pasture than in forest soils, even at field capacity conditions. Land use and moisture were significant factors influencing the composition of methanogenic and methanotrophic communities. The diversity and evenness of methanogens did not change throughout the experiment. In contrast, methanotrophs exhibited the highest diversity and evenness in pasture soils at 100% FC. Taken together, our results suggest that increased moisture exacerbates soil CH4 emissions and microbial responses driven by land-use change in the Amazon. This is the first report on the microbial CH4 cycle in Amazonian upland soils that combined one-month gas measurements with advanced molecular methods.


Asunto(s)
Metano , Suelo , Clima , Bosques , Metano/análisis , Suelo/química , Microbiología del Suelo
3.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32169937

RESUMEN

Biological nitrogen fixation can be an important source of nitrogen in tropical forests that serve as a major CO2 sink. Extensive deforestation of the Amazon is known to influence microbial communities and the biogeochemical cycles they mediate. However, it is unknown how diazotrophs (nitrogen-fixing microorganisms) respond to deforestation and subsequent ecosystem conversion to agriculture, as well as whether they can recover in secondary forests that are established after agriculture is abandoned. To address these knowledge gaps, we combined a spatially explicit sampling approach with high-throughput sequencing of nifH genes. The main objectives were to assess the functional distance decay relationship of the diazotrophic bacterial community in a tropical forest ecosystem and to quantify the roles of various factors that drive the observed changes in the diazotrophic community structure. We observed an increase in local diazotrophic diversity (α-diversity) with a decrease in community turnover (ß-diversity), associated with a shift in diazotrophic community structure as a result of the forest-to-pasture conversion. Both diazotrophic community turnover and structure showed signs of recovery in secondary forests. Changes in the diazotrophic community were primarily driven by the change in land use rather than differences in geochemical characteristics or geographic distances. The diazotroph communities in secondary forests resembled those in primary forests, suggesting that at least partial recovery of diazotrophs is possible following agricultural abandonment.IMPORTANCE The Amazon region is a major tropical forest region that is being deforested at an alarming rate to create space for cattle ranching and agriculture. Diazotrophs (nitrogen-fixing microorganisms) play an important role in supplying soil N for plant growth in tropical forests. It is unknown how diazotrophs respond to deforestation and whether they can recover in secondary forests that establish after agriculture is abandoned. Using high-throughput sequencing of nifH genes, we characterized the response of diazotrophs' ß-diversity and identified major drivers of changes in diazotrophs from forest-to-pasture and pasture-to-secondary-forest conversions. Studying the impact of land use change on diazotrophs is important for a better understanding of the impact of deforestation on tropical forest ecosystem functioning, and our results on the potential recovery of diazotrophs in secondary forests imply the possible restoration of ecosystem functions in secondary forests.


Asunto(s)
Bacterias/metabolismo , Conservación de los Recursos Naturales , Bosque Lluvioso , Microbiología del Suelo , Bacterias/clasificación , Brasil , Microbiota , Fijación del Nitrógeno , Suelo/química
4.
Mycorrhiza ; 28(2): 117-127, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29243065

RESUMEN

Grazing and topography have drastic effects on plant communities and soil properties. These effects are thought to influence arbuscular mycorrhizal (AM) fungi. However, the simultaneous impacts of grazing pressure (sheep ha-1) and topography on plant and soil factors and their relationship to the production of extra-radical AM hyphae are not well understood. Our 10-year study assessed relationships between grazing, plant species richness, aboveground plant productivity, soil nutrients, edaphic properties, and AM hyphal length density (HLD) in different topographic areas (flat or sloped). We found HLD linearly declined with increasing grazing pressure (1.5-9.0 sheep ha-1) in sloped areas, but HLD was greatest at moderate grazing pressure (4.5 sheep ha-1) in flat areas. Structural equation modeling indicates grazing reduces HLD by altering soil nutrient dynamics in sloped areas, but non-linearly influences HLD through plant community and edaphic changes in flat areas. Our findings highlight how topography influences key plant and soil factors, thus regulating the effects of grazing pressure on extra-radical hyphal production of AM fungi in grasslands. Understanding how grazing and topography influence AM fungi in semi-arid grasslands is vital, as globally, severe human population pressure and increasing demand for food aggravate the grazing intensity in grasslands.


Asunto(s)
Crianza de Animales Domésticos/métodos , Pradera , Hifa/fisiología , Micorrizas/fisiología , Ovinos/fisiología , Animales , China , Geografía , Densidad de Población
5.
Mol Ecol ; 26(6): 1547-1556, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28100018

RESUMEN

Land use change is one of the greatest environmental impacts worldwide, especially to tropical forests. The Amazon rainforest has been subject to particularly high rates of land use change, primarily to cattle pasture. A commonly observed response to cattle pasture establishment in the Amazon is the conversion of soil from a methane sink in rainforest, to a methane source in pasture. However, it is not known how the microorganisms that mediate methane flux are altered by land use change. Here, we use the deepest metagenomic sequencing of Amazonian soil to date to investigate differences in methane-cycling microorganisms and their traits across rainforest and cattle pasture soils. We found that methane-cycling microorganisms responded to land use change, with the strongest responses exhibited by methane-consuming, rather than methane-producing, microorganisms. These responses included a reduction in the relative abundance of methanotrophs and a significant decrease in the abundance of genes encoding particulate methane monooxygenase. We also observed compositional changes to methanotroph and methanogen communities as well as changes to methanotroph life history strategies. Our observations suggest that methane-cycling microorganisms are vulnerable to land use change, and this vulnerability may underlie the response of methane flux to land use change in Amazon soils.


Asunto(s)
Agricultura , Metano/metabolismo , Bosque Lluvioso , Microbiología del Suelo , Animales , Bacterias , Bovinos , Suelo
6.
Proc Natl Acad Sci U S A ; 110(3): 988-93, 2013 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-23271810

RESUMEN

The Amazon rainforest is the Earth's largest reservoir of plant and animal diversity, and it has been subjected to especially high rates of land use change, primarily to cattle pasture. This conversion has had a strongly negative effect on biological diversity, reducing the number of plant and animal species and homogenizing communities. We report here that microbial biodiversity also responds strongly to conversion of the Amazon rainforest, but in a manner different from plants and animals. Local taxonomic and phylogenetic diversity of soil bacteria increases after conversion, but communities become more similar across space. This homogenization is driven by the loss of forest soil bacteria with restricted ranges (endemics) and results in a net loss of diversity. This study shows homogenization of microbial communities in response to human activities. Given that soil microbes represent the majority of biodiversity in terrestrial ecosystems and are intimately involved in ecosystem functions, we argue that microbial biodiversity loss should be taken into account when assessing the impact of land use change in tropical forests.


Asunto(s)
Agricultura , Bacterias/aislamiento & purificación , Biodiversidad , Microbiología del Suelo , Clima Tropical , Animales , Bacterias/clasificación , Bacterias/genética , Brasil , Bovinos , Ecosistema , Humanos , Filogenia , Lluvia , Árboles
7.
Proc Natl Acad Sci U S A ; 109(43): 17621-6, 2012 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-23045666

RESUMEN

The mammalian intestine is home to a dense community of bacteria and its associated bacteriophage (phage). Virtually nothing is known about how phages impact the establishment and maintenance of resident bacterial communities in the intestine. Here, we examine the phages harbored by Enterococcus faecalis, a commensal of the human intestine. We show that E. faecalis strain V583 produces a composite phage (ΦV1/7) derived from two distinct chromosomally encoded prophage elements. One prophage, prophage 1 (ΦV1), encodes the structural genes necessary for phage particle production. Another prophage, prophage 7 (ΦV7), is required for phage infection of susceptible host bacteria. Production of ΦV1/7 is controlled, in part, by nutrient availability, because ΦV1/7 particle numbers are elevated by free amino acids in culture and during growth in the mouse intestine. ΦV1/7 confers an advantage to E. faecalis V583 during competition with other E. faecalis strains in vitro and in vivo. Thus, we propose that E. faecalis V583 uses phage particles to establish and maintain dominance of its intestinal niche in the presence of closely related competing strains. Our findings indicate that bacteriophages can impact the dynamics of bacterial colonization in the mammalian intestinal ecosystem.


Asunto(s)
Bacteriófagos/fisiología , Intestinos/microbiología , Aminoácidos/metabolismo , Animales , Vida Libre de Gérmenes , Humanos , Ratones , Ratones Endogámicos C57BL , Reacción en Cadena de la Polimerasa
8.
Artículo en Inglés | MEDLINE | ID: mdl-26513904

RESUMEN

Burkholderia pseudomallei (Bp), the causative agent of melioidosis, is unevenly distributed in the complex soil environment. Physicochemical factors in the soil have been reported to affect microbial communities in the soil. The effect of physicochemical factors on the number and diversity of organisms in the soil has not been reported. Twenty-five each B. pseudomallei-positive and -negative soil samples were collected from a melioidosis-endemic area. The amount of Bp in each soil sample was measured by culture and quantitative PCR (qPCR). The following physicochemical properties from each soil sample were measured: pH, total organic carbon (TOC), total nitrogen (TN), carbon to nitrogen ratio (C:N ratio), exchangeable calcium (EC) and extractable iron (EI). All the physico- chemical properties measured were significantly different between the Bp-positive and -negative soil samples. The Bp-positive soil samples had lower C:N ratios and lower EC and a higher EI (p < 0.05) than the Bp-negative samples. The average pH was lower (3.7-5.0) in the Bp-negative samples. Among the Bp-positive soil samples, the EC was negatively correlated with the PCR copy number. The amount of bacteria detected with the qPCR method was higher than with the culture method, suggesting the presence of unculturable forms of bacteria that might re-grow when the environmental conditions was suitable. A total of 117 Bp isolates obtained from the soil samples were classified into 25 groups using BOX-PCR. The genetic diversity of Bp, did not correlate with the physicochemical factors investigated. A suitable pH range and C:N ratio may be important for the presence of Bp. The EI supports the needs and EC probably alters the growth of Bp. The genetic diversity of the bacteria was not influenced by the soil factors investigated in this study. This information shows the environment conducive to the growth of Bp. This gives us information about how to potentially control or decrease Bp in the soil in the future.


Asunto(s)
Burkholderia pseudomallei/genética , Variación Genética , Microbiología del Suelo , Bacterias , Melioidosis
9.
Environ Microbiol ; 16(6): 1854-66, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24286373

RESUMEN

Studying how bacterial strains diverge over space and time and how divergence leads to ecotype formation is important for understanding structure and dynamics of environmental communities. Here we assess the ecological speciation and temporal dynamics of a collection of Shewanella baltica strains from the redox transition zone of the central Baltic Sea, sampled at three time points over a course of 12 years, with a subcollection containing 46 strains subjected to detailed genetic and physiological characterization. Nine clades were consistently recovered by three different genotyping approaches: gyrB gene sequencing, multilocus sequence typing (MLST) and whole genome clustering of data from comparative genomic hybridization, and indicated specialization according to nutrient availability, particle association and temporal distribution. Genomic analysis suggested higher intra- than inter-clade recombination that might result from niche partitioning. Substantial heterogeneity in carbon utilization and respiratory capabilities suggested rapid diversification within the same 'named' species and physical habitat and showed consistency with genetic relatedness. At least two major ecotypes, represented by MLST clades A and E, were proposed based on genetic, ecological and physiological distinctiveness. This study suggests that genetic analysis in conjunction with phenotypic evaluation can provide better understanding of the ecological framework and evolutionary trajectories of microbial species.


Asunto(s)
Agua de Mar/microbiología , Shewanella/genética , Microbiología del Agua , Análisis por Conglomerados , Variación Genética , Genoma Bacteriano , Genotipo , Microbiota/genética , Anotación de Secuencia Molecular , Tipificación de Secuencias Multilocus , Océanos y Mares , Oxidación-Reducción , Filogenia , Agua de Mar/química , Selección Genética
10.
Appl Environ Microbiol ; 80(1): 281-8, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162570

RESUMEN

The Amazon rainforest, the largest equatorial forest in the world, is being cleared for pasture and agricultural use at alarming rates. Tropical deforestation is known to cause alterations in microbial communities at taxonomic and phylogenetic levels, but it is unclear whether microbial functional groups are altered. We asked whether free-living nitrogen-fixing microorganisms (diazotrophs) respond to deforestation in the Amazon rainforest, using analysis of the marker gene nifH. Clone libraries were generated from soil samples collected from a primary forest, a 5-year-old pasture originally converted from primary forest, and a secondary forest established after pasture abandonment. Although diazotroph richness did not significantly change among the three plots, diazotroph community composition was altered with forest-to-pasture conversion, and phylogenetic similarity was higher among pasture communities than among those in forests. There was also 10-fold increase in nifH gene abundance following conversion from primary forest to pasture. Three environmental factors were associated with the observed changes: soil acidity, total N concentration, and C/N ratio. Our results suggest a partial restoration to initial levels of abundance and community structure of diazotrophs following pasture abandonment, with primary and secondary forests sharing similar communities. We postulate that the response of diazotrophs to land use change is a direct consequence of changes in plant communities, particularly the higher N demand of pasture plant communities for supporting aboveground plant growth.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biota , Actividades Humanas , Fijación del Nitrógeno , Microbiología del Suelo , Agricultura/métodos , Bacterias/metabolismo , Carbono/análisis , Análisis por Conglomerados , Conservación de los Recursos Naturales , Concentración de Iones de Hidrógeno , Datos de Secuencia Molecular , Nitrógeno/análisis , Oxidorreductasas/genética , Filogenia , Análisis de Secuencia de ADN , Suelo/química , América del Sur , Árboles
11.
Mol Ecol ; 23(12): 2988-99, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24806276

RESUMEN

Land use change in the Amazon rainforest alters the taxonomic structure of soil microbial communities, but whether it alters their functional gene composition is unknown. We used the highly parallel microarray technology GeoChip 4.0, which contains 83,992 probes specific for genes linked nutrient cycling and other processes, to evaluate how the diversity, abundance and similarity of the targeted genes responded to forest-to-pasture conversion. We also evaluated whether these parameters were reestablished with secondary forest growth. A spatially nested scheme was employed to sample a primary forest, two pastures (6 and 38 years old) and a secondary forest. Both pastures had significantly lower microbial functional genes richness and diversity when compared to the primary forest. Gene composition and turnover were also significantly modified with land use change. Edaphic traits associated with soil acidity, iron availability, soil texture and organic matter concentration were correlated with these gene changes. Although primary and secondary forests showed similar functional gene richness and diversity, there were differences in gene composition and turnover, suggesting that community recovery was not complete in the secondary forest. Gene association analysis revealed that response to ecosystem conversion varied significantly across functional gene groups, with genes linked to carbon and nitrogen cycling mostly altered. This study indicates that diversity and abundance of numerous environmentally important genes respond to forest-to-pasture conversion and hence have the potential to affect the related processes at an ecosystem scale.


Asunto(s)
Ecosistema , Microbiología del Suelo , Agricultura , Ciclo del Carbono , Genes Bacterianos , Genes Fúngicos , Variación Genética , Metagenoma , Familia de Multigenes , Ciclo del Nitrógeno , Análisis de Secuencia por Matrices de Oligonucleótidos , Árboles , Clima Tropical
13.
J Bacteriol ; 194(10): 2744-5, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22535930

RESUMEN

Microbial communities in the termite hindgut are essential for degrading plant material. We present the high-quality draft genome sequence of the Opitutaceae bacterium strain TAV1, the first member of the phylum Verrucomicrobia to be isolated from wood-feeding termites. The genomic analysis reveals genes coding for lignocellulosic degradation and nitrogen fixation.


Asunto(s)
Genoma Bacteriano , Isópteros/microbiología , Simbiosis/fisiología , Verrucomicrobia/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Datos de Secuencia Molecular
14.
Appl Environ Microbiol ; 78(16): 5542-9, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22660701

RESUMEN

Free-living diazotrophs are diverse and ubiquitous in soil, contributing the nitrogen pool in natural ecosystems. The isolation of nitrogen-fixing microorganisms has relied on semisolid nitrogen-free medium enrichment, followed by multiple subculturing steps. These procedures limit the diversity of recovered isolates. In the current study, we investigated three different isolation strategies for free-living diazotrophs using a soil sample from the Amazon forest. The methods were (i) direct plating on solid nitrogen-free medium under a 2% O(2) concentration, (ii) enrichment in semisolid nitrogen-free medium before plating on solid nitrogen-free medium under 2% O(2), and (iii) enrichment followed by subculturing in the semisolid nitrogen-free medium before plating on nitrogen containing medium under a 21% O(2) concentration. A total of 794 isolates were differentiated by their genomic fingerprinting patterns, and strains with unique profiles were identified on the basis of sequencing of their 16S rRNA gene. Isolates belonged to four bacterial phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteriodetes. The novel strategy of combining a solid N-free medium and hypoxic conditions showed an increase of 62.6% in the diversity of diazotrophs in comparison to that obtained by the conventional semisolid medium-based methods. All isolates grew on the nitrogen-free medium under a 2% O(2) concentration, 78% of them showed the presence of the nifH gene, and 39% tested positive for acetylene reduction activity. Our results suggest that direct plating of soil dilutions on nitrogen-free solid medium under a 2% O(2) concentration is a useful strategy for the isolation of the diverse diazotrophic communities.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Técnicas Bacteriológicas/métodos , Fijación del Nitrógeno , Microbiología del Suelo , Acetileno/metabolismo , Anaerobiosis , Análisis por Conglomerados , Medios de Cultivo/química , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Datos de Secuencia Molecular , Oxidación-Reducción , Oxígeno/metabolismo , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
16.
Appl Environ Microbiol ; 78(5): 1544-55, 2012 03.
Artículo en Inglés | MEDLINE | ID: mdl-22194293

RESUMEN

Previously we reported the cultivation of novel verrucomicrobia, including strain TAV2 (93% 16S rRNA gene identity to its nearest cultivated representative, Opitutus terreae PB90-1) from the gut of the termite Reticulitermes flavipes. To gain better insight into the Verrucomicrobia as a whole and understand the role of verrucomicrobia within the termite gut ecosystem, we analyzed a draft genome and undertook a physiological characterization of TAV2. Strain TAV2 is an autochthonous member of the R. flavipes gut microbiota and groups phylogenetically among diverse Verrucomicrobia from R. flavipes and other termites that are represented by 16S rRNA gene sequences alone. TAV2 is a microaerophile, possessing a high-affinity cbb(3)-type terminal oxidase-encoding gene and exhibiting an optimum growth rate between 2 and 8% (vol/vol) oxygen. It has the genetic potential to degrade cellulose, an important function within termite guts, but its in vitro substrate utilization spectrum was limited to starch and a few mono- and disaccharides. Growth occurred on nitrogen-free medium, and genomic screening revealed genes for dinitrogenases, heretofore detected in only a few members of the Verrucomicrobia. This represents the first (i) characterization of a verrucomicrobial species from the termite gut, (ii) report of nif and anf genes in a nonacidophilic verrucomicrobial species, and (iii) description of a microaerophilic genotype and phenotype in this phylum of bacteria. The genetic and physiological distinctiveness of TAV2 supports its recognition as the type strain of a new genus and species, for which the name Geminisphaera colitermitum gen. nov., sp. nov., is proposed.


Asunto(s)
Genoma Bacteriano , Redes y Vías Metabólicas/genética , Fijación del Nitrógeno , Verrucomicrobia/clasificación , Verrucomicrobia/genética , Aerobiosis , Animales , ADN Bacteriano/química , ADN Bacteriano/genética , Tracto Gastrointestinal/microbiología , Isópteros/microbiología , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Verrucomicrobia/aislamiento & purificación , Verrucomicrobia/fisiología
17.
Proc Natl Acad Sci U S A ; 106(37): 15909-14, 2009 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-19805231

RESUMEN

To what extent genotypic differences translate to phenotypic variation remains a poorly understood issue of paramount importance for several cornerstone concepts of microbiology including the species definition. Here, we take advantage of the completed genomic sequences, expressed proteomic profiles, and physiological studies of 10 closely related Shewanella strains and species to provide quantitative insights into this issue. Our analyses revealed that, despite extensive horizontal gene transfer within these genomes, the genotypic and phenotypic similarities among the organisms were generally predictable from their evolutionary relatedness. The power of the predictions depended on the degree of ecological specialization of the organisms evaluated. Using the gradient of evolutionary relatedness formed by these genomes, we were able to partly isolate the effect of ecology from that of evolutionary divergence and to rank the different cellular functions in terms of their rates of evolution. Our ranking also revealed that whole-cell protein expression differences among these organisms, when the organisms were grown under identical conditions, were relatively larger than differences at the genome level, suggesting that similarity in gene regulation and expression should constitute another important parameter for (new) species description. Collectively, our results provide important new information toward beginning a systems-level understanding of bacterial species and genera.


Asunto(s)
Evolución Biológica , Shewanella/clasificación , Shewanella/genética , Secuencia Conservada , Ecosistema , Evolución Molecular , Expresión Génica , Transferencia de Gen Horizontal , Genoma Bacteriano , Fenotipo , Filogenia , Análisis por Matrices de Proteínas , Proteoma , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Shewanella/fisiología , Biología de Sistemas , Factores de Tiempo
18.
Microbiol Resour Announc ; 11(8): e0043222, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-35852316

RESUMEN

Here, we report the metagenomes from two Amazonian floodplain sediments in eastern Brazil. Tropical wetlands are well known for their role in the global carbon cycle. Microbial information on this diversified and dynamic landscape will provide further insights into its significance in regional and global biogeochemical cycles.

19.
Appl Environ Microbiol ; 77(15): 5352-60, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21642407

RESUMEN

The use of comparative genomics for the study of different microbiological species has increased substantially as sequence technologies become more affordable. However, efforts to fully link a genotype to its phenotype remain limited to the development of one mutant at a time. In this study, we provided a high-throughput alternative to this limiting step by coupling comparative genomics to the use of phenotype arrays for five sequenced Shewanella strains. Positive phenotypes were obtained for 441 nutrients (C, N, P, and S sources), with N-based compounds being the most utilized for all strains. Many genes and pathways predicted by genome analyses were confirmed with the comparative phenotype assay, and three degradation pathways believed to be missing in Shewanella were confirmed as missing. A number of previously unknown gene products were predicted to be parts of pathways or to have a function, expanding the number of gene targets for future genetic analyses. Ecologically, the comparative high-throughput phenotype analysis provided insights into niche specialization among the five different strains. For example, Shewanella amazonensis strain SB2B, isolated from the Amazon River delta, was capable of utilizing 60 C compounds, whereas Shewanella sp. strain W3-18-1, isolated from deep marine sediment, utilized only 25 of them. In spite of the large number of nutrient sources yielding positive results, our study indicated that except for the N sources, they were not sufficiently informative to predict growth phenotypes from increasing evolutionary distances. Our results indicate the importance of phenotypic evaluation for confirming genome predictions. This strategy will accelerate the functional discovery of genes and provide an ecological framework for microbial genome sequencing projects.


Asunto(s)
Ecosistema , Metabolismo Energético/fisiología , Redes y Vías Metabólicas/fisiología , Shewanella/metabolismo , Secuencia de Bases , Carbono/metabolismo , ADN Bacteriano/clasificación , ADN Bacteriano/genética , ADN Ribosómico/clasificación , ADN Ribosómico/genética , Metabolismo Energético/genética , Genómica , Genotipo , Redes y Vías Metabólicas/genética , Nitrógeno/metabolismo , Fenotipo , Fósforo/metabolismo , Filogenia , ARN Ribosómico 16S/clasificación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Shewanella/genética , Azufre/metabolismo
20.
BMC Microbiol ; 11: 64, 2011 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-21450087

RESUMEN

BACKGROUND: EtrA in Shewanella oneidensis MR-1, a model organism for study of adaptation to varied redox niches, shares 73.6% and 50.8% amino acid sequence identity with the oxygen-sensing regulators Fnr in E. coli and Anr in Pseudomonas aeruginosa, respectively; however, its regulatory role of anaerobic metabolism in Shewanella spp. is complex and not well understood. RESULTS: The expression of the nap genes, nrfA, cymA and hcp was significantly reduced in etrA deletion mutant EtrA7-1; however, limited anaerobic growth and nitrate reduction occurred, suggesting that multiple regulators control nitrate reduction in this strain. Dimethyl sulfoxide (DMSO) and fumarate reductase gene expression was down-regulated at least 2-fold in the mutant, which, showed lower or no reduction of these electron acceptors when compared to the wild type, suggesting both respiratory pathways are under EtrA control. Transcript analysis further suggested a role of EtrA in prophage activation and down-regulation of genes implicated in aerobic metabolism. CONCLUSION: In contrast to previous studies that attributed a minor regulatory role to EtrA in Shewanella spp., this study demonstrates that EtrA acts as a global transcriptional regulator and, in conjunction with other regulators, fine-tunes the expression of genes involved in anaerobic metabolism in S. oneidensis strain MR-1. Transcriptomic and sequence analyses of the genes differentially expressed showed that those mostly affected by the mutation belonged to the "Energy metabolism" category, while stress-related genes were indirectly regulated in the mutant possibly as a result of a secondary perturbation (e.g. oxidative stress, starvation). We also conclude based on sequence, physiological and expression analyses that this regulator is more appropriately termed Fnr and recommend this descriptor be used in future publications.


Asunto(s)
Proteínas Bacterianas/metabolismo , Metabolismo Energético , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas/genética , Shewanella/fisiología , Factores de Transcripción/metabolismo , Anaerobiosis , Proteínas Bacterianas/genética , Eliminación de Gen , Perfilación de la Expresión Génica , Nitratos/metabolismo , Análisis de Secuencia de ADN , Shewanella/genética , Shewanella/crecimiento & desarrollo , Shewanella/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA